These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 31500931)
1. Improved robustness of reinforcement learning policies upon conversion to spiking neuronal network platforms applied to Atari Breakout game. Patel D; Hazan H; Saunders DJ; Siegelmann HT; Kozma R Neural Netw; 2019 Dec; 120():108-115. PubMed ID: 31500931 [TBL] [Abstract][Full Text] [Related]
2. Solving the spike feature information vanishing problem in spiking deep Q network with potential based normalization. Sun Y; Zeng Y; Li Y Front Neurosci; 2022; 16():953368. PubMed ID: 36090282 [TBL] [Abstract][Full Text] [Related]
3. Human-Level Control Through Directly Trained Deep Spiking Q-Networks. Liu G; Deng W; Xie X; Huang L; Tang H IEEE Trans Cybern; 2023 Nov; 53(11):7187-7198. PubMed ID: 36063509 [TBL] [Abstract][Full Text] [Related]
4. Toward robust and scalable deep spiking reinforcement learning. Akl M; Ergene D; Walter F; Knoll A Front Neurorobot; 2022; 16():1075647. PubMed ID: 36742191 [TBL] [Abstract][Full Text] [Related]
6. An exact mapping from ReLU networks to spiking neural networks. Stanojevic A; Woźniak S; Bellec G; Cherubini G; Pantazi A; Gerstner W Neural Netw; 2023 Nov; 168():74-88. PubMed ID: 37742533 [TBL] [Abstract][Full Text] [Related]
7. Combining STDP and binary networks for reinforcement learning from images and sparse rewards. Chevtchenko SF; Ludermir TB Neural Netw; 2021 Dec; 144():496-506. PubMed ID: 34601362 [TBL] [Abstract][Full Text] [Related]
8. Reinforcement Learning With Low-Complexity Liquid State Machines. Ponghiran W; Srinivasan G; Roy K Front Neurosci; 2019; 13():883. PubMed ID: 31507361 [TBL] [Abstract][Full Text] [Related]
9. Progressive Tandem Learning for Pattern Recognition With Deep Spiking Neural Networks. Wu J; Xu C; Han X; Zhou D; Zhang M; Li H; Tan KC IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7824-7840. PubMed ID: 34546918 [TBL] [Abstract][Full Text] [Related]
10. Achieving efficient interpretability of reinforcement learning via policy distillation and selective input gradient regularization. Xing J; Nagata T; Zou X; Neftci E; Krichmar JL Neural Netw; 2023 Apr; 161():228-241. PubMed ID: 36774862 [TBL] [Abstract][Full Text] [Related]
11. Training spiking neuronal networks to perform motor control using reinforcement and evolutionary learning. Haşegan D; Deible M; Earl C; D'Onofrio D; Hazan H; Anwar H; Neymotin SA Front Comput Neurosci; 2022; 16():1017284. PubMed ID: 36249482 [TBL] [Abstract][Full Text] [Related]
12. Self-architectural knowledge distillation for spiking neural networks. Qiu H; Ning M; Song Z; Fang W; Chen Y; Sun T; Ma Z; Yuan L; Tian Y Neural Netw; 2024 Oct; 178():106475. PubMed ID: 38941738 [TBL] [Abstract][Full Text] [Related]
13. Deep learning in spiking neural networks. Tavanaei A; Ghodrati M; Kheradpisheh SR; Masquelier T; Maida A Neural Netw; 2019 Mar; 111():47-63. PubMed ID: 30682710 [TBL] [Abstract][Full Text] [Related]
14. Spiking neural networks fine-tuning for brain image segmentation. Yue Y; Baltes M; Abuhajar N; Sun T; Karanth A; Smith CD; Bihl T; Liu J Front Neurosci; 2023; 17():1267639. PubMed ID: 38027484 [TBL] [Abstract][Full Text] [Related]
15. A Supervised Learning Algorithm for Learning Precise Timing of Multiple Spikes in Multilayer Spiking Neural Networks. Taherkhani A; Belatreche A; Li Y; Maguire LP IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5394-5407. PubMed ID: 29993611 [TBL] [Abstract][Full Text] [Related]
16. A regularization perspective based theoretical analysis for adversarial robustness of deep spiking neural networks. Zhang H; Cheng J; Zhang J; Liu H; Wei Z Neural Netw; 2023 Aug; 165():164-174. PubMed ID: 37295205 [TBL] [Abstract][Full Text] [Related]
17. Recurrent Spiking Neural Network Learning Based on a Competitive Maximization of Neuronal Activity. Demin V; Nekhaev D Front Neuroinform; 2018; 12():79. PubMed ID: 30498439 [TBL] [Abstract][Full Text] [Related]
18. Emergent Solutions to High-Dimensional Multitask Reinforcement Learning. Kelly S; Heywood MI Evol Comput; 2018; 26(3):347-380. PubMed ID: 29932363 [TBL] [Abstract][Full Text] [Related]
19. Multisource Transfer Double DQN Based on Actor Learning. Pan J; Wang X; Cheng Y; Yu Q; Jie Pan ; Xuesong Wang ; Yuhu Cheng ; Qiang Yu ; Yu Q; Cheng Y; Pan J; Wang X IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2227-2238. PubMed ID: 29771674 [TBL] [Abstract][Full Text] [Related]
20. Training Spiking Neural Networks for Reinforcement Learning Tasks With Temporal Coding Method. Wu G; Liang D; Luan S; Wang J Front Neurosci; 2022; 16():877701. PubMed ID: 36061595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]