BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31500931)

  • 1. Improved robustness of reinforcement learning policies upon conversion to spiking neuronal network platforms applied to Atari Breakout game.
    Patel D; Hazan H; Saunders DJ; Siegelmann HT; Kozma R
    Neural Netw; 2019 Dec; 120():108-115. PubMed ID: 31500931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving the spike feature information vanishing problem in spiking deep Q network with potential based normalization.
    Sun Y; Zeng Y; Li Y
    Front Neurosci; 2022; 16():953368. PubMed ID: 36090282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-Level Control Through Directly Trained Deep Spiking Q-Networks.
    Liu G; Deng W; Xie X; Huang L; Tang H
    IEEE Trans Cybern; 2023 Nov; 53(11):7187-7198. PubMed ID: 36063509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward robust and scalable deep spiking reinforcement learning.
    Akl M; Ergene D; Walter F; Knoll A
    Front Neurorobot; 2022; 16():1075647. PubMed ID: 36742191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locally connected spiking neural networks for unsupervised feature learning.
    Saunders DJ; Patel D; Hazan H; Siegelmann HT; Kozma R
    Neural Netw; 2019 Nov; 119():332-340. PubMed ID: 31499357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An exact mapping from ReLU networks to spiking neural networks.
    Stanojevic A; Woźniak S; Bellec G; Cherubini G; Pantazi A; Gerstner W
    Neural Netw; 2023 Nov; 168():74-88. PubMed ID: 37742533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining STDP and binary networks for reinforcement learning from images and sparse rewards.
    Chevtchenko SF; Ludermir TB
    Neural Netw; 2021 Dec; 144():496-506. PubMed ID: 34601362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinforcement Learning With Low-Complexity Liquid State Machines.
    Ponghiran W; Srinivasan G; Roy K
    Front Neurosci; 2019; 13():883. PubMed ID: 31507361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training spiking neuronal networks to perform motor control using reinforcement and evolutionary learning.
    Haşegan D; Deible M; Earl C; D'Onofrio D; Hazan H; Anwar H; Neymotin SA
    Front Comput Neurosci; 2022; 16():1017284. PubMed ID: 36249482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressive Tandem Learning for Pattern Recognition With Deep Spiking Neural Networks.
    Wu J; Xu C; Han X; Zhou D; Zhang M; Li H; Tan KC
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7824-7840. PubMed ID: 34546918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achieving efficient interpretability of reinforcement learning via policy distillation and selective input gradient regularization.
    Xing J; Nagata T; Zou X; Neftci E; Krichmar JL
    Neural Netw; 2023 Apr; 161():228-241. PubMed ID: 36774862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning in spiking neural networks.
    Tavanaei A; Ghodrati M; Kheradpisheh SR; Masquelier T; Maida A
    Neural Netw; 2019 Mar; 111():47-63. PubMed ID: 30682710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spiking neural networks fine-tuning for brain image segmentation.
    Yue Y; Baltes M; Abuhajar N; Sun T; Karanth A; Smith CD; Bihl T; Liu J
    Front Neurosci; 2023; 17():1267639. PubMed ID: 38027484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Supervised Learning Algorithm for Learning Precise Timing of Multiple Spikes in Multilayer Spiking Neural Networks.
    Taherkhani A; Belatreche A; Li Y; Maguire LP
    IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5394-5407. PubMed ID: 29993611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A regularization perspective based theoretical analysis for adversarial robustness of deep spiking neural networks.
    Zhang H; Cheng J; Zhang J; Liu H; Wei Z
    Neural Netw; 2023 Aug; 165():164-174. PubMed ID: 37295205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recurrent Spiking Neural Network Learning Based on a Competitive Maximization of Neuronal Activity.
    Demin V; Nekhaev D
    Front Neuroinform; 2018; 12():79. PubMed ID: 30498439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergent Solutions to High-Dimensional Multitask Reinforcement Learning.
    Kelly S; Heywood MI
    Evol Comput; 2018; 26(3):347-380. PubMed ID: 29932363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multisource Transfer Double DQN Based on Actor Learning.
    Pan J; Wang X; Cheng Y; Yu Q; Jie Pan ; Xuesong Wang ; Yuhu Cheng ; Qiang Yu ; Yu Q; Cheng Y; Pan J; Wang X
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2227-2238. PubMed ID: 29771674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Training Spiking Neural Networks for Reinforcement Learning Tasks With Temporal Coding Method.
    Wu G; Liang D; Luan S; Wang J
    Front Neurosci; 2022; 16():877701. PubMed ID: 36061595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is Deep Reinforcement Learning Ready for Practical Applications in Healthcare? A Sensitivity Analysis of Duel-DDQN for Hemodynamic Management in Sepsis Patients.
    Lu M; Shahn Z; Sow D; Doshi-Velez F; Lehman LH
    AMIA Annu Symp Proc; 2020; 2020():773-782. PubMed ID: 33936452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.