BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 31501283)

  • 1. Development of Transposon Mutagenesis for Chlamydia muridarum.
    Wang Y; LaBrie SD; Carrell SJ; Suchland RJ; Dimond ZE; Kwong F; Rockey DD; Hefty PS; Hybiske K
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomal Recombination Targets in
    Suchland RJ; Carrell SJ; Wang Y; Hybiske K; Kim DB; Dimond ZE; Hefty PS; Rockey DD
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer.
    LaBrie SD; Dimond ZE; Harrison KS; Baid S; Wickstrum J; Suchland RJ; Hefty PS
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toll-like receptor 2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum.
    O'Connell CM; AbdelRahman YM; Green E; Darville HK; Saira K; Smith B; Darville T; Scurlock AM; Meyer CR; Belland RJ
    Infect Immun; 2011 Mar; 79(3):1044-56. PubMed ID: 21199910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Minimal Replicon Enables Efficacious, Species-Specific Gene Deletion in Chlamydia and Extension of Gene Knockout Studies to the Animal Model of Infection Using Chlamydia muridarum.
    Fields KA; Bodero MD; Scanlon KR; Jewett TJ; Wolf K
    Infect Immun; 2022 Dec; 90(12):e0045322. PubMed ID: 36350146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homologues of the Chlamydia trachomatis and Chlamydia muridarum Inclusion Membrane Protein IncS Are Interchangeable for Early Development but Not for Inclusion Stability in the Late Developmental Cycle.
    Cortina ME; Derré I
    mSphere; 2023 Apr; 8(2):e0000323. PubMed ID: 36853051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A primary study on genes with selected mutations by in vitro passage of Chlamydia muridarum strains.
    Zhou Z; Liu N; Wang Y; Emmanuel AW; You X; Liu J; Li Z; Wu Y; Zhong G
    Pathog Dis; 2019 Apr; 77(3):. PubMed ID: 31197357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Plasmid-Free Chlamydia muridarum Organisms Using a Pgp3 Detection-Based Immunofluorescence Assay.
    Chen C; Zhong G; Ren L; Lu C; Li Z; Wu Y
    J Microbiol Biotechnol; 2015 Oct; 25(10):1621-8. PubMed ID: 26059520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlamydia muridarum with Mutations in Chromosomal Genes
    Shao L; Zhang T; Liu Q; Wang J; Zhong G
    Infect Immun; 2017 Aug; 85(8):. PubMed ID: 28584162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmid-encoded Pgp3 is a major virulence factor for Chlamydia muridarum to induce hydrosalpinx in mice.
    Liu Y; Huang Y; Yang Z; Sun Y; Gong S; Hou S; Chen C; Li Z; Liu Q; Wu Y; Baseman J; Zhong G
    Infect Immun; 2014 Dec; 82(12):5327-35. PubMed ID: 25287930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Screen in Chlamydia muridarum Reveals Role for an Interferon-Induced Host Cell Death Program in Antimicrobial Inclusion Rupture.
    Giebel AM; Hu S; Rajaram K; Finethy R; Toh E; Brothwell JA; Morrison SG; Suchland RJ; Stein BD; Coers J; Morrison RP; Nelson DE
    mBio; 2019 Apr; 10(2):. PubMed ID: 30967464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression library immunization confers partial protection against Chlamydia muridarum genital infection.
    McNeilly CL; Beagley KW; Moore RJ; Haring V; Timms P; Hafner LM
    Vaccine; 2007 Mar; 25(14):2643-55. PubMed ID: 17239501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydial Plasmid-Dependent Pathogenicity.
    Zhong G
    Trends Microbiol; 2017 Feb; 25(2):141-152. PubMed ID: 27712952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Mutagenesis in Borrelia burgdorferi.
    Lin T; Gao L
    Methods Mol Biol; 2018; 1690():201-223. PubMed ID: 29032547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive genome analysis and comparisons of the swine pathogen, Chlamydia suis reveals unique ORFs and candidate host-specificity factors.
    Dimond ZE; Hefty PS
    Pathog Dis; 2021 Mar; 79(2):. PubMed ID: 32639528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydia trachomatis and Chlamydia muridarum spectinomycin resistant vectors and a transcriptional fluorescent reporter to monitor conversion from replicative to infectious bacteria.
    Cortina ME; Ende RJ; Bishop RC; Bayne C; Derré I
    PLoS One; 2019; 14(6):e0217753. PubMed ID: 31170215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates.
    Vasilevsky S; Stojanov M; Greub G; Baud D
    Virulence; 2016; 7(1):11-22. PubMed ID: 26580416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic basis of plasmid tropism between Chlamydia trachomatis and Chlamydia muridarum.
    Wang Y; Cutcliffe LT; Skilton RJ; Ramsey KH; Thomson NR; Clarke IN
    Pathog Dis; 2014 Oct; 72(1):19-23. PubMed ID: 24700815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Genital Tract Virulence Factor pGP3 Is Essential for Chlamydia muridarum Colonization in the Gastrointestinal Tract.
    Shao L; Zhang T; Melero J; Huang Y; Liu Y; Liu Q; He C; Nelson DE; Zhong G
    Infect Immun; 2018 Jan; 86(1):. PubMed ID: 29038127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of aminoglycoside 3' adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability.
    Lowden NM; Yeruva L; Johnson CM; Bowlin AK; Fisher DJ
    BMC Res Notes; 2015 Oct; 8():570. PubMed ID: 26471806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.