These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31501446)

  • 1. A high-performance oxygen evolution catalyst in neutral-pH for sunlight-driven CO
    Zhou LQ; Ling C; Zhou H; Wang X; Liao J; Reddy GK; Deng L; Peck TC; Zhang R; Whittingham MS; Wang C; Chu CW; Yao Y; Jia H
    Nat Commun; 2019 Sep; 10(1):4081. PubMed ID: 31501446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting Neutral Water Oxidation through Surface Oxygen Modulation.
    Zhang L; Wang L; Wen Y; Ni F; Zhang B; Peng H
    Adv Mater; 2020 Aug; 32(31):e2002297. PubMed ID: 32584508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly active oxygen evolution integrated with efficient CO
    Meng Y; Zhang X; Hung WH; He J; Tsai YS; Kuang Y; Kenney MJ; Shyue JJ; Liu Y; Stone KH; Zheng X; Suib SL; Lin MC; Liang Y; Dai H
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):23915-23922. PubMed ID: 31723041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging Electrocatalysts for Water Oxidation under Near-Neutral CO
    Jiang N; Zhu Z; Xue W; Xia BY; You B
    Adv Mater; 2022 Jan; 34(2):e2105852. PubMed ID: 34658063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+.
    Kanan MW; Nocera DG
    Science; 2008 Aug; 321(5892):1072-5. PubMed ID: 18669820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide.
    Singh MR; Clark EL; Bell AT
    Phys Chem Chem Phys; 2015 Jul; 17(29):18924-36. PubMed ID: 26103939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.
    Tatin A; Comminges C; Kokoh B; Costentin C; Robert M; Savéant JM
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5526-9. PubMed ID: 27140621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.
    Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ
    J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics.
    Schreier M; Curvat L; Giordano F; Steier L; Abate A; Zakeeruddin SM; Luo J; Mayer MT; Grätzel M
    Nat Commun; 2015 Jun; 6():7326. PubMed ID: 26065697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving Simultaneous CO
    Ma W; Wang H; Yu W; Wang X; Xu Z; Zong X; Li C
    Angew Chem Int Ed Engl; 2018 Mar; 57(13):3473-3477. PubMed ID: 29411479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Exceptionally Efficient Co-Co
    Xu Y; Mo J; Fu ZC; Liu S; Yang Z; Fu WF
    Chemistry; 2018 Jun; 24(34):8596-8602. PubMed ID: 29718568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Material-Microbe Interfaces for Solar-Driven CO
    Sahoo PC; Pant D; Kumar M; Puri SK; Ramakumar SSV
    Trends Biotechnol; 2020 Nov; 38(11):1245-1261. PubMed ID: 32305152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption.
    Zheng X; Zhang B; De Luna P; Liang Y; Comin R; Voznyy O; Han L; García de Arquer FP; Liu M; Dinh CT; Regier T; Dynes JJ; He S; Xin HL; Peng H; Prendergast D; Du X; Sargent EH
    Nat Chem; 2018 Feb; 10(2):149-154. PubMed ID: 29359759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO
    Ghausi MA; Xie J; Li Q; Wang X; Yang R; Wu M; Wang Y; Dai L
    Angew Chem Int Ed Engl; 2018 Oct; 57(40):13135-13139. PubMed ID: 30126074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes.
    Kaczur JJ; Yang H; Liu Z; Sajjad SD; Masel RI
    Front Chem; 2018; 6():263. PubMed ID: 30018951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solar-Driven CO
    Wang H; Fu S; Shang B; Jeon S; Zhong Y; Harmon NJ; Choi C; Stach EA; Wang H
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202305251. PubMed ID: 37235523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts.
    Morales-Guio CG; Liardet L; Mayer MT; Tilley SD; Grätzel M; Hu X
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):664-7. PubMed ID: 25403656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.