These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 31501517)

  • 1. A compendium of promoter-centered long-range chromatin interactions in the human genome.
    Jung I; Schmitt A; Diao Y; Lee AJ; Liu T; Yang D; Tan C; Eom J; Chan M; Chee S; Chiang Z; Kim C; Masliah E; Barr CL; Li B; Kuan S; Kim D; Ren B
    Nat Genet; 2019 Oct; 51(10):1442-1449. PubMed ID: 31501517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and epigenetic features of promoters with ubiquitous chromatin accessibility support ubiquitous transcription of cell-essential genes.
    Fan K; Moore JE; Zhang XO; Weng Z
    Nucleic Acids Res; 2021 Jun; 49(10):5705-5725. PubMed ID: 33978759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic approaches for the discovery of CFTR regulatory elements.
    Ott CJ; Harris A
    Transcription; 2011; 2(1):23-7. PubMed ID: 21326906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding a signature-based model of transcription cofactor recruitment dictated by cardinal cis-regulatory elements in proximal promoter regions.
    Benner C; Konovalov S; Mackintosh C; Hutt KR; Stunnenberg R; Garcia-Bassets I
    PLoS Genet; 2013 Nov; 9(11):e1003906. PubMed ID: 24244184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The accessible chromatin landscape of the human genome.
    Thurman RE; Rynes E; Humbert R; Vierstra J; Maurano MT; Haugen E; Sheffield NC; Stergachis AB; Wang H; Vernot B; Garg K; John S; Sandstrom R; Bates D; Boatman L; Canfield TK; Diegel M; Dunn D; Ebersol AK; Frum T; Giste E; Johnson AK; Johnson EM; Kutyavin T; Lajoie B; Lee BK; Lee K; London D; Lotakis D; Neph S; Neri F; Nguyen ED; Qu H; Reynolds AP; Roach V; Safi A; Sanchez ME; Sanyal A; Shafer A; Simon JM; Song L; Vong S; Weaver M; Yan Y; Zhang Z; Zhang Z; Lenhard B; Tewari M; Dorschner MO; Hansen RS; Navas PA; Stamatoyannopoulos G; Iyer VR; Lieb JD; Sunyaev SR; Akey JM; Sabo PJ; Kaul R; Furey TS; Dekker J; Crawford GE; Stamatoyannopoulos JA
    Nature; 2012 Sep; 489(7414):75-82. PubMed ID: 22955617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A map of the cis-regulatory sequences in the mouse genome.
    Shen Y; Yue F; McCleary DF; Ye Z; Edsall L; Kuan S; Wagner U; Dixon J; Lee L; Lobanenkov VV; Ren B
    Nature; 2012 Aug; 488(7409):116-20. PubMed ID: 22763441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the mechanisms of genome-wide long-range interactions: interpreting chromosome organization.
    Wang J; Meng X; Chen H; Yuan C; Li X; Zhou Y; Chen M
    Brief Funct Genomics; 2016 Sep; 15(5):385-95. PubMed ID: 26769147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The functional consequences of variation in transcription factor binding.
    Cusanovich DA; Pavlovic B; Pritchard JK; Gilad Y
    PLoS Genet; 2014 Mar; 10(3):e1004226. PubMed ID: 24603674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chromatin accessibility landscape of primary human cancers.
    Corces MR; Granja JM; Shams S; Louie BH; Seoane JA; Zhou W; Silva TC; Groeneveld C; Wong CK; Cho SW; Satpathy AT; Mumbach MR; Hoadley KA; Robertson AG; Sheffield NC; Felau I; Castro MAA; Berman BP; Staudt LM; Zenklusen JC; Laird PW; Curtis C; ; Greenleaf WJ; Chang HY
    Science; 2018 Oct; 362(6413):. PubMed ID: 30361341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hooked Up from a Distance: Charting Genome-Wide Long-Range Interaction Maps in Neural Cells Chromatin to Identify Novel Candidate Genes for Neurodevelopmental Disorders.
    Mercurio S; Pozzolini G; Baldi R; Barilà SE; Pitasi M; Catona O; D'Aurizio R; Nicolis SK
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements.
    Rye M; Sætrom P; Håndstad T; Drabløs F
    BMC Biol; 2011 Nov; 9():80. PubMed ID: 22115494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IMPACT: Genomic Annotation of Cell-State-Specific Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors.
    Amariuta T; Luo Y; Gazal S; Davenport EE; van de Geijn B; Ishigaki K; Westra HJ; Teslovich N; Okada Y; Yamamoto K; ; Price AL; Raychaudhuri S
    Am J Hum Genet; 2019 May; 104(5):879-895. PubMed ID: 31006511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-resolution map of the three-dimensional chromatin interactome in human cells.
    Jin F; Li Y; Dixon JR; Selvaraj S; Ye Z; Lee AY; Yen CA; Schmitt AD; Espinoza CA; Ren B
    Nature; 2013 Nov; 503(7475):290-4. PubMed ID: 24141950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes.
    Alam T; Medvedeva YA; Jia H; Brown JB; Lipovich L; Bajic VB
    PLoS One; 2014; 9(10):e109443. PubMed ID: 25275320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long range chromatin interactions involved in gene regulation.
    Bartkuhn M; Renkawitz R
    Biochim Biophys Acta; 2008 Nov; 1783(11):2161-6. PubMed ID: 18706938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The New Frontier of Functional Genomics: From Chromatin Architecture and Noncoding RNAs to Therapeutic Targets.
    Papanicolaou N; Bonetti A
    SLAS Discov; 2020 Jul; 25(6):568-580. PubMed ID: 32486876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occupancy maps of 208 chromatin-associated proteins in one human cell type.
    Partridge EC; Chhetri SB; Prokop JW; Ramaker RC; Jansen CS; Goh ST; Mackiewicz M; Newberry KM; Brandsmeier LA; Meadows SK; Messer CL; Hardigan AA; Coppola CJ; Dean EC; Jiang S; Savic D; Mortazavi A; Wold BJ; Myers RM; Mendenhall EM
    Nature; 2020 Jul; 583(7818):720-728. PubMed ID: 32728244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation.
    Li G; Ruan X; Auerbach RK; Sandhu KS; Zheng M; Wang P; Poh HM; Goh Y; Lim J; Zhang J; Sim HS; Peh SQ; Mulawadi FH; Ong CT; Orlov YL; Hong S; Zhang Z; Landt S; Raha D; Euskirchen G; Wei CL; Ge W; Wang H; Davis C; Fisher-Aylor KI; Mortazavi A; Gerstein M; Gingeras T; Wold B; Sun Y; Fullwood MJ; Cheung E; Liu E; Sung WK; Snyder M; Ruan Y
    Cell; 2012 Jan; 148(1-2):84-98. PubMed ID: 22265404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping and analysis of chromatin state dynamics in nine human cell types.
    Ernst J; Kheradpour P; Mikkelsen TS; Shoresh N; Ward LD; Epstein CB; Zhang X; Wang L; Issner R; Coyne M; Ku M; Durham T; Kellis M; Bernstein BE
    Nature; 2011 May; 473(7345):43-9. PubMed ID: 21441907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZNF143 provides sequence specificity to secure chromatin interactions at gene promoters.
    Bailey SD; Zhang X; Desai K; Aid M; Corradin O; Cowper-Sal Lari R; Akhtar-Zaidi B; Scacheri PC; Haibe-Kains B; Lupien M
    Nat Commun; 2015 Feb; 2():6186. PubMed ID: 25645053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.