These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31501669)

  • 21. Bioactive
    Li YY; Tan XM; Wang YD; Yang J; Zhang YG; Sun BD; Gong T; Guo LP; Ding G
    J Nat Prod; 2020 May; 83(5):1488-1494. PubMed ID: 32302133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene Oxide Exhibits Antifungal Activity against
    Zhang X; Cao H; Wang J; Li F; Zhao J
    Microorganisms; 2022 Oct; 10(10):. PubMed ID: 36296270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A small cysteine-rich fungal effector, BsCE66 is essential for the virulence of Bipolaris sorokiniana on wheat plants.
    Kaladhar VC; Singh Y; Nair AM; Kumar K; Singh AK; Verma PK
    Fungal Genet Biol; 2023 May; 166():103798. PubMed ID: 37059379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sesquiterpenoids and Xanthones from the Kiwifruit-Associated Fungus
    Yu JJ; Jin YX; Huang SS; He J
    J Fungi (Basel); 2021 Dec; 8(1):. PubMed ID: 35049949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic Action of Commercially Available Fungicides for Protecting Wheat from Common Root Rot Caused by
    Wei X; Xu Z; Zhang N; Yang W; Liu D; Ma L
    Plant Dis; 2021 Mar; 105(3):667-674. PubMed ID: 32729809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana.
    Dong N; Liu X; Lu Y; Du L; Xu H; Liu H; Xin Z; Zhang Z
    Funct Integr Genomics; 2010 May; 10(2):215-26. PubMed ID: 20225092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Compromised Mlo Pathway Affects the Response of Barley to the Necrotrophic Fungus Bipolaris sorokiniana (Teleomorph: Cochliobolus sativus) and Its Toxins.
    Kumar J; Hückelhoven R; Beckhove U; Nagarajan S; Kogel KH
    Phytopathology; 2001 Feb; 91(2):127-33. PubMed ID: 18944385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TaPIMP2, a pathogen-induced MYB protein in wheat, contributes to host resistance to common root rot caused by Bipolaris sorokiniana.
    Wei X; Shan T; Hong Y; Xu H; Liu X; Zhang Z
    Sci Rep; 2017 May; 7(1):1754. PubMed ID: 28496196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heat shock-induced enhanced susceptibility of barley to Bipolaris sorokiniana is associated with elevated ROS production and plant defence-related gene expression.
    Künstler A; Füzék K; Schwarczinger I; Nagy JK; Bakonyi J; Fodor J; Hafez YM; Király L
    Plant Biol (Stuttg); 2023 Aug; 25(5):803-812. PubMed ID: 37194683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BsTup1 is required for growth, conidiogenesis, stress response and pathogenicity of Bipolaris sorokiniana.
    Ma QZ; Wu HY; Xie SP; Zhao BS; Yin XM; Ding SL; Guo YS; Xu C; Zang R; Geng YH; Zhang M
    Int J Biol Macromol; 2022 Nov; 220():721-732. PubMed ID: 35981683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New ophiobolin sesterterpenoid and drimane sesquiterpenoids from a marine-alga-derived fungus Aspergillus sp.
    Fang ST; Shi ZZ; Song YP; Yin XL; Ji NY
    Fitoterapia; 2023 Oct; 170():105659. PubMed ID: 37648029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silver nanoparticles mediated altered gene expression of melanin biosynthesis genes in Bipolaris sorokiniana.
    Mishra S; Singh HB
    Microbiol Res; 2015 Mar; 172():16-8. PubMed ID: 25721474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prevalence and Importance of the Necrotrophic Effector Gene
    Manan F; Shi G; Gong H; Hou H; Khan H; Leng Y; Castell-Miller C; Ali S; Faris JD; Zhong S; Steffenson BJ; Liu Z
    Plant Dis; 2023 Aug; 107(8):2424-2430. PubMed ID: 36724100
    [No Abstract]   [Full Text] [Related]  

  • 34. First Report of Spot Blotch Caused by
    Neves D; Bruening B; Knott CA; Lee C; Bradley C
    Plant Dis; 2021 Jun; ():. PubMed ID: 34191535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of phenylamide phytoalexins and characterization of inducible phenylamide metabolism in wheat.
    Ube N; Harada D; Katsuyama Y; Osaki-Oka K; Tonooka T; Ueno K; Taketa S; Ishihara A
    Phytochemistry; 2019 Nov; 167():112098. PubMed ID: 31450090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome Sequence Resource for Pathogen
    Meng Y; Wang J; Bai B; Wang L; Yao L; Ma Z; Si E; Li B; Ma X; Shang X; Wang H
    Plant Dis; 2020 Jun; 104(6):1574-1577. PubMed ID: 32293998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Terpenoids from Kiwi endophytic fungus
    Yu JJ; Wei WK; Zhang Y; Cox RJ; He J; Liu JK; Feng T
    Front Chem; 2022; 10():990734. PubMed ID: 36118317
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Singh UB; Malviya D; Singh S; Kumar M; Sahu PK; Singh HV; Kumar S; Roy M; Imran M; Rai JP; Sharma AK; Saxena AK
    Front Microbiol; 2019; 10():1697. PubMed ID: 31417511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antagonistic Strain
    Kang K; Niu Z; Zhang W; Wei S; Lv Y; Hu Y
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme activity and population genetic structure analysis in wheat associated with resistance to Bipolaris sorokiniana-common root rot diseases.
    Qalavand F; Esfahani MN; Vatandoost J; Azarm DA
    Phytochemistry; 2022 Aug; 200():113208. PubMed ID: 35447108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.