These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. New Clinical Approaches and Emerging Evidence on Immune-Checkpoint Inhibitors as Anti-Cancer Therapeutics: CTLA-4 and PD-1 Pathways and Beyond. Christodoulou MI; Zaravinos A Crit Rev Immunol; 2019; 39(5):379-408. PubMed ID: 32422018 [TBL] [Abstract][Full Text] [Related]
3. Immune checkpoints and cancer development: Therapeutic implications and future directions. Mehdizadeh S; Bayatipoor H; Pashangzadeh S; Jafarpour R; Shojaei Z; Motallebnezhad M Pathol Res Pract; 2021 Jul; 223():153485. PubMed ID: 34022684 [TBL] [Abstract][Full Text] [Related]
4. Vascular Targeting to Increase the Efficiency of Immune Checkpoint Blockade in Cancer. Georganaki M; van Hooren L; Dimberg A Front Immunol; 2018; 9():3081. PubMed ID: 30627131 [TBL] [Abstract][Full Text] [Related]
5. Combination Immunotherapy with CAR T Cells and Checkpoint Blockade for the Treatment of Solid Tumors. Grosser R; Cherkassky L; Chintala N; Adusumilli PS Cancer Cell; 2019 Nov; 36(5):471-482. PubMed ID: 31715131 [TBL] [Abstract][Full Text] [Related]
6. Not All Immune Checkpoints Are Created Equal. De Sousa Linhares A; Leitner J; Grabmeier-Pfistershammer K; Steinberger P Front Immunol; 2018; 9():1909. PubMed ID: 30233564 [TBL] [Abstract][Full Text] [Related]
8. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Wei SC; Duffy CR; Allison JP Cancer Discov; 2018 Sep; 8(9):1069-1086. PubMed ID: 30115704 [TBL] [Abstract][Full Text] [Related]
9. The importance of immune checkpoints in immune monitoring: A future paradigm shift in the treatment of cancer. Alemohammad H; Najafzadeh B; Asadzadeh Z; Baghbanzadeh A; Ghorbaninezhad F; Najafzadeh A; Safarpour H; Bernardini R; Brunetti O; Sonnessa M; Fasano R; Silvestris N; Baradaran B Biomed Pharmacother; 2022 Feb; 146():112516. PubMed ID: 34906767 [TBL] [Abstract][Full Text] [Related]
10. TIGIT: A Key Inhibitor of the Cancer Immunity Cycle. Manieri NA; Chiang EY; Grogan JL Trends Immunol; 2017 Jan; 38(1):20-28. PubMed ID: 27793572 [TBL] [Abstract][Full Text] [Related]
11. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Qin S; Xu L; Yi M; Yu S; Wu K; Luo S Mol Cancer; 2019 Nov; 18(1):155. PubMed ID: 31690319 [TBL] [Abstract][Full Text] [Related]
12. The emerging role of immune checkpoint based approaches in AML and MDS. Boddu P; Kantarjian H; Garcia-Manero G; Allison J; Sharma P; Daver N Leuk Lymphoma; 2018 Apr; 59(4):790-802. PubMed ID: 28679300 [TBL] [Abstract][Full Text] [Related]
13. Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer. Lazăr DC; Avram MF; Romoșan I; Cornianu M; Tăban S; Goldiș A World J Gastroenterol; 2018 Aug; 24(32):3583-3616. PubMed ID: 30166856 [TBL] [Abstract][Full Text] [Related]
14. Immune checkpoint inhibitor combinations: Current efforts and important aspects for success. Kon E; Benhar I Drug Resist Updat; 2019 Jul; 45():13-29. PubMed ID: 31382144 [TBL] [Abstract][Full Text] [Related]
15. Immune checkpoint therapy in liver cancer. Xu F; Jin T; Zhu Y; Dai C J Exp Clin Cancer Res; 2018 May; 37(1):110. PubMed ID: 29843754 [TBL] [Abstract][Full Text] [Related]
16. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells. Kim N; Kim HS Front Immunol; 2018; 9():2041. PubMed ID: 30250471 [TBL] [Abstract][Full Text] [Related]
17. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Hargadon KM; Johnson CE; Williams CJ Int Immunopharmacol; 2018 Sep; 62():29-39. PubMed ID: 29990692 [TBL] [Abstract][Full Text] [Related]
18. Immune checkpoint blockade opens a new way to cancer immunotherapy. Sadreddini S; Baradaran B; Aghebati-Maleki A; Sadreddini S; Shanehbandi D; Fotouhi A; Aghebati-Maleki L J Cell Physiol; 2019 Jun; 234(6):8541-8549. PubMed ID: 30511409 [TBL] [Abstract][Full Text] [Related]
19. Expression of costimulatory and inhibitory receptors in FoxP3 Toker A; Ohashi PS Adv Cancer Res; 2019; 144():193-261. PubMed ID: 31349899 [TBL] [Abstract][Full Text] [Related]
20. Reversing T-cell Dysfunction and Exhaustion in Cancer. Zarour HM Clin Cancer Res; 2016 Apr; 22(8):1856-64. PubMed ID: 27084739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]