BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 31502220)

  • 1. Generation of Knockout Human Primary Keratinocytes by CRISPR/Cas9.
    Grossi S; Fenini G; Hennig P; Di Filippo M; Beer HD
    Methods Mol Biol; 2020; 2109():125-145. PubMed ID: 31502220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Generation of CRISPR/Cas9-Mediated Knockout Human Primary Keratinocytes by Electroporation.
    Karakaya T; Slaufova M; Di Filippo M; Hennig P; Fenini G; Kündig T; Beer HD
    Methods Mol Biol; 2024 Feb; ():. PubMed ID: 38407798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. COL7A1 Editing via CRISPR/Cas9 in Recessive Dystrophic Epidermolysis Bullosa.
    Hainzl S; Peking P; Kocher T; Murauer EM; Larcher F; Del Rio M; Duarte B; Steiner M; Klausegger A; Bauer JW; Reichelt J; Koller U
    Mol Ther; 2017 Nov; 25(11):2573-2584. PubMed ID: 28800953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of Functional Gene Knockout Melanoma Cell Lines by CRISPR-Cas9 Gene Editing.
    Hargadon KM; Bushhouse DZ; Johnson CE; Williams CJ
    Methods Mol Biol; 2021; 2265():25-46. PubMed ID: 33704703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Step, High-Efficiency CRISPR-Cas9 Genome Editing in Primary Human Disease-Derived Fibroblasts.
    Martufi M; Good RB; Rapiteanu R; Schmidt T; Patili E; Tvermosegaard K; New M; Nanthakumar CB; Betts J; Blanchard AD; Maratou K
    CRISPR J; 2019 Feb; 2(1):31-40. PubMed ID: 31021235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Simplest Protocol for Rapid and Long-Term Culture of Primary Epidermal Keratinocytes from Human and Mouse.
    Pinto F; Suzuki D; Senoo M
    Methods Mol Biol; 2020; 2109():1-22. PubMed ID: 31489602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing of Human Primary Keratinocytes by CRISPR/Cas9 Reveals an Essential Role of the NLRP1 Inflammasome in UVB Sensing.
    Fenini G; Grossi S; Contassot E; Biedermann T; Reichmann E; French LE; Beer HD
    J Invest Dermatol; 2018 Dec; 138(12):2644-2652. PubMed ID: 30096351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Modification of Human Primary Keratinocytes by Lentiviral Vectors.
    Freije A; Sanz-Gómez N; Gandarillas A
    Methods Mol Biol; 2020; 2109():113-123. PubMed ID: 31123998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for CRISPR-Cas9 modification of glycosylation in 3D organotypic skin models.
    Marinova IN; Wandall HH; Dabelsteen S
    STAR Protoc; 2021 Sep; 2(3):100668. PubMed ID: 34485933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-Directed Gene Editing for the Generation of Loss-of-Function Mutants in High-Throughput Zebrafish F
    Shankaran SS; Dahlem TJ; Bisgrove BW; Yost HJ; Tristani-Firouzi M
    Curr Protoc Mol Biol; 2017 Jul; 119():31.9.1-31.9.22. PubMed ID: 28678442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of two CRISPR-Cas9 genome editing protocols for rapid generation of Trypanosoma cruzi gene knockout mutants.
    Burle-Caldas GA; Soares-Simões M; Lemos-Pechnicki L; DaRocha WD; Teixeira SMR
    Int J Parasitol; 2018 Jul; 48(8):591-596. PubMed ID: 29577891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells.
    Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF
    Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of TP53-knockout canine cells using optimized CRIPSR/Cas9 vector system for canine cancer research.
    Eun K; Park MG; Jeong YW; Jeong YI; Hyun SH; Hwang WS; Kim SH; Kim H
    BMC Biotechnol; 2019 Jan; 19(1):1. PubMed ID: 30606176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9.
    Beneke T; Gluenz E
    Methods Mol Biol; 2019; 1971():189-210. PubMed ID: 30980304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient, Rapid and Co-CRISPR-Independent Genome Editing in
    Prior H; Jawad AK; MacConnachie L; Beg AA
    G3 (Bethesda); 2017 Nov; 7(11):3693-3698. PubMed ID: 28893845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of TGF-β signaling promotes expansion of human epidermal keratinocytes in feeder cell co-culture.
    Suzuki D; Pinto F; Senoo M
    Wound Repair Regen; 2017 May; 25(3):526-531. PubMed ID: 28437853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-Mediated In Situ Correction of LAMB3 Gene in Keratinocytes Derived from a Junctional Epidermolysis Bullosa Patient.
    Benati D; Miselli F; Cocchiarella F; Patrizi C; Carretero M; Baldassarri S; Ammendola V; Has C; Colloca S; Del Rio M; Larcher F; Recchia A
    Mol Ther; 2018 Nov; 26(11):2592-2603. PubMed ID: 30122422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promotion of Human Epidermal Keratinocyte Expansion in Feeder Cell Co-culture.
    Suzuki D; Pinto F; Senoo M
    Methods Mol Biol; 2019; 1993():15-31. PubMed ID: 31148075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.