These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31502609)

  • 1. Exploring Burstein-Moss type effects in nickel doped hematite dendrite nanostructures for enhanced photo-electrochemical water splitting.
    Gahlawat S; Singh J; Yadav AK; Ingole PP
    Phys Chem Chem Phys; 2019 Sep; 21(36):20463-20477. PubMed ID: 31502609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of a Nickel-Based Oxygen Evolution Reaction Catalyst on a Hematite Photoanode via Incorporation of Cerium for Photoelectrochemical Water Oxidation.
    Lim H; Kim JY; Evans EJ; Rai A; Kim JH; Wygant BR; Mullins CB
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30654-30661. PubMed ID: 28813595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction.
    Behara DK; Ummireddi AK; Aragonda V; Gupta PK; Pala RG; Sivakumar S
    Phys Chem Chem Phys; 2016 Mar; 18(12):8364-77. PubMed ID: 26898750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limitation of Fermi level shifts by polaron defect states in hematite photoelectrodes.
    Lohaus C; Klein A; Jaegermann W
    Nat Commun; 2018 Oct; 9(1):4309. PubMed ID: 30333488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films.
    Saw KG; Aznan NM; Yam FK; Ng SS; Pung SY
    PLoS One; 2015; 10(10):e0141180. PubMed ID: 26517364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Ni charge states on structural, electronic, magnetic, and optical properties of InN.
    Usman Z; Cao C; Khan M; Mahmood T; Niazi AR
    J Phys Chem A; 2013 Jul; 117(27):5650-4. PubMed ID: 23773208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (Ti/Zr,N) codoped hematite for enhancing the photoelectrochemical activity of water splitting.
    Pan H; Meng X; Liu D; Li S; Qin G
    Phys Chem Chem Phys; 2015 Sep; 17(34):22179-86. PubMed ID: 26239189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of medium band gap Ag-Bi-Nb-O and Ag-Bi-Ta-O semiconductors for driving direct water splitting with visible light.
    Wang L; Cao B; Kang W; Hybertsen M; Maeda K; Domen K; Khalifah PG
    Inorg Chem; 2013 Aug; 52(16):9192-205. PubMed ID: 23901790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.
    Zhang T; Zhu Z; Chen H; Bai Y; Xiao S; Zheng X; Xue Q; Yang S
    Nanoscale; 2015 Feb; 7(7):2933-40. PubMed ID: 25587830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge Distribution in Nanostructured TiO2 Photoanode Determined by Quantitative Analysis of the Band Edge Unpinning.
    Mandal D; Hamann TW
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):419-24. PubMed ID: 26693971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The (0001) surfaces of α-Fe2O3 nanocrystals are preferentially activated for water oxidation by Ni doping.
    Zhao P; Wu F; Kronawitter CX; Chen Z; Yao N; Koel BE
    Phys Chem Chem Phys; 2015 Oct; 17(40):26797-803. PubMed ID: 26395868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.
    Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical, electrochemical and hydrophilic properties of Y2O3 doped TiO2 nanocomposite films.
    Zhang X; Yang H; Tang A
    J Phys Chem B; 2008 Dec; 112(51):16271-9. PubMed ID: 19053703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photo-Current Enhancement in Carbon Quantum Dots Functionalized Titania Nanotube Arrays.
    Rani S; Borse PH; Pareek A; Rajalakshmi N; Dhathathreyan KS
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5999-6004. PubMed ID: 27427662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flat-Band Potentials of Molecularly Thin Metal Oxide Nanosheets.
    Xu P; Milstein TJ; Mallouk TE
    ACS Appl Mater Interfaces; 2016 May; 8(18):11539-47. PubMed ID: 27102083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.
    Wu ZF; Gao PF; Guo L; Kang J; Fang DQ; Zhang Y; Xia MG; Zhang SL; Wen YH
    Phys Chem Chem Phys; 2017 Dec; 19(47):31796-31803. PubMed ID: 29170767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of Phase-Filling Singularities in the Optical Dielectric Function of Highly Doped n-Type Ge.
    Xu C; Fernando NS; Zollner S; Kouvetakis J; Menéndez J
    Phys Rev Lett; 2017 Jun; 118(26):267402. PubMed ID: 28707902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conduction-band effective mass and bandgap of ZnSnN
    Cao X; Kawamura F; Ninomiya Y; Taniguchi T; Yamada N
    Sci Rep; 2017 Nov; 7(1):14987. PubMed ID: 29118322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anion-Substitution-Induced Nonrigid Variation of Band Structure in SrNbO
    Oka D; Hirose Y; Kaneko M; Nakao S; Fukumura T; Yamashita K; Hasegawa T
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35008-35015. PubMed ID: 30221926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.