These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31502733)

  • 21. Effect of recreational-fisheries management on fish biodiversity in gravel pit lakes, with contrasts to unmanaged lakes.
    Matern S; Emmrich M; Klefoth T; Wolter C; Nikolaus R; Wegener N; Arlinghaus R
    J Fish Biol; 2019 Jun; 94(6):865-881. PubMed ID: 31017660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems.
    Cohen AS; Gergurich EL; Kraemer BM; McGlue MM; McIntyre PB; Russell JM; Simmons JD; Swarzenski PW
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9563-8. PubMed ID: 27503877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predators drive community reorganization during experimental range shifts.
    Jones NT; Symons CC; Cavalheri H; Pedroza-Ramos A; Shurin JB
    J Anim Ecol; 2020 Oct; 89(10):2378-2388. PubMed ID: 32592594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of changing climate on the ecology and management of selected Laurentian Great Lakes fisheries.
    Lynch AJ; Taylor WW; Smith KD
    J Fish Biol; 2010 Nov; 77(8):1764-82. PubMed ID: 21078089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From clear lakes to murky waters - tracing the functional response of high-latitude lake communities to concurrent 'greening' and 'browning'.
    Hayden B; Harrod C; Thomas SM; Eloranta AP; Myllykangas JP; Siwertsson A; Praebel K; Knudsen R; Amundsen PA; Kahilainen KK
    Ecol Lett; 2019 May; 22(5):807-816. PubMed ID: 30793453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sedimentary DNA record of eukaryotic algal and cyanobacterial communities in a shallow Lake driven by human activities and climate change.
    Zhang H; Huo S; Yeager KM; Wu F
    Sci Total Environ; 2021 Jan; 753():141985. PubMed ID: 32892000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of trophic status and large-scale climatic change on the structure of fish communities in Perialpine lakes.
    Massol F; David P; Gerdeaux D; Jarne P
    J Anim Ecol; 2007 May; 76(3):538-51. PubMed ID: 17439470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Climate warming moderates the impacts of introduced sportfish on multiple dimensions of prey biodiversity.
    Loewen CJG; Strecker AL; Gilbert B; Jackson DA
    Glob Chang Biol; 2020 Sep; 26(9):4937-4951. PubMed ID: 32538537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications.
    Lu X; Song S; Lu Y; Wang T; Liu Z; Li Q; Zhang M; Suriyanarayanan S; Jenkins A
    Environ Sci Process Impacts; 2017 Oct; 19(10):1300-1311. PubMed ID: 28858346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The future distribution of river fish: The complex interplay of climate and land use changes, species dispersal and movement barriers.
    Radinger J; Essl F; Hölker F; Horký P; Slavík O; Wolter C
    Glob Chang Biol; 2017 Nov; 23(11):4970-4986. PubMed ID: 28500795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How does fish functional diversity respond to environmental changes in two large shallow lakes?
    Mao Z; Gu X; Cao Y; Luo J; Zeng Q; Chen H; Jeppesen E
    Sci Total Environ; 2021 Jan; 753():142158. PubMed ID: 33207432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of lake macrophyte species and functional traits to climate and land use changes.
    Kim JY; Nishihiro J
    Sci Total Environ; 2020 Sep; 736():139628. PubMed ID: 32497883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling interactive effects of multiple disturbances on a coastal lake ecosystem: Implications for management.
    Jones HFE; Özkundakci D; McBride CG; Pilditch CA; Allan MG; Hamilton DP
    J Environ Manage; 2018 Feb; 207():444-455. PubMed ID: 29195169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of climate and land-use changes on fish catches across lakes at a global scale.
    Kao YC; Rogers MW; Bunnell DB; Cowx IG; Qian SS; Anneville O; Beard TD; Brinker A; Britton JR; Chura-Cruz R; Gownaris NJ; Jackson JR; Kangur K; Kolding J; Lukin AA; Lynch AJ; Mercado-Silva N; Moncayo-Estrada R; Njaya FJ; Ostrovsky I; Rudstam LG; Sandström ALE; Sato Y; Siguayro-Mamani H; Thorpe A; van Zwieten PAM; Volta P; Wang Y; Weiperth A; Weyl OLF; Young JD
    Nat Commun; 2020 May; 11(1):2526. PubMed ID: 32433562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic: an overview.
    Evans MS; Muir D; Lockhart WL; Stern G; Ryan M; Roach P
    Sci Total Environ; 2005 Dec; 351-352():94-147. PubMed ID: 16225909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lake morphometry and resource polymorphism determine niche segregation between cool- and cold-water-adapted fish.
    Hayden B; Harrod C; Kahilaineni KK
    Ecology; 2014 Feb; 95(2):538-52. PubMed ID: 24669746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local forcings affect lake zooplankton vulnerability and response to climate warming.
    Alric B; Jenny JP; Berthon V; Arnaud F; Pignol C; Reyss JL; Sabatier P; Perga ME
    Ecology; 2013 Dec; 94(12):2767-80. PubMed ID: 24597223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of traditional environmental knowledge to assess the impact of climate change on subsistence fishing in the James Bay Region of Northern Ontario, Canada.
    Hori Y; Tam B; Gough WA; Ho-Foong E; Karagatzides JD; Liberda EN; Tsuji LJ
    Rural Remote Health; 2012; 12():1878. PubMed ID: 22471525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-native species and lake warming negatively affect Arctic char Salvelinus alpinus abundance; deep thermal refugia facilitate co-existence.
    Morrissey-McCaffrey E; Shephard S; Kelly FL; Kelly-Quinn M
    J Fish Biol; 2019 Jan; 94(1):5-16. PubMed ID: 30315584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fish thermal habitat current use and simulation of thermal habitat availability in lakes of the Argentine Patagonian Andes under climate change scenarios RCP 4.5 and RCP 8.5.
    Vigliano PH; Rechencq MM; Fernández MV; Lippolt GE; Macchi PJ
    Sci Total Environ; 2018 Sep; 636():688-698. PubMed ID: 29727836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.