These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 31502830)
1. Real-Time Measurement of Airborne Carbon Nanotubes in Workplace Atmospheres. Zheng L; Kulkarni P Anal Chem; 2019 Oct; 91(20):12713-12723. PubMed ID: 31502830 [TBL] [Abstract][Full Text] [Related]
2. Analysis of Crystalline Silica Aerosol Using Portable Raman Spectrometry: Feasibility of Near Real-Time Measurement. Zheng L; Kulkarni P; Birch ME; Ashley K; Wei S Anal Chem; 2018 May; 90(10):6229-6239. PubMed ID: 29659249 [TBL] [Abstract][Full Text] [Related]
3. Detection of Carbonaceous Aerosols Released in CNT Workplaces Using an Aethalometer. Kim JB; Kim KH; Yun ST; Bae GN Ann Occup Hyg; 2016 Jul; 60(6):717-30. PubMed ID: 27179059 [TBL] [Abstract][Full Text] [Related]
4. Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques. Ludvigsson L; Isaxon C; Nilsson PT; Tinnerberg H; Messing ME; Rissler J; Skaug V; Gudmundsson A; Bohgard M; Hedmer M; Pagels J Ann Occup Hyg; 2016 May; 60(4):493-512. PubMed ID: 26748380 [TBL] [Abstract][Full Text] [Related]
5. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082 [TBL] [Abstract][Full Text] [Related]
6. Laboratory evaluation of a personal aethalometer for assessing airborne carbon nanotube exposures. O'Shaughnessy P; Stoltenberg A; Holder C; Altmaier R J Occup Environ Hyg; 2020 Jun; 17(6):262-273. PubMed ID: 32286917 [TBL] [Abstract][Full Text] [Related]
7. Aerosol Analysis Using Handheld Raman Spectrometer: On-site Quantification of Trace Crystalline Silica in Workplace Atmospheres. Wei S; Johnson B; Breitenstein M; Zheng L; Snawder J; Kulkarni P Ann Work Expo Health; 2022 Jun; 66(5):656-670. PubMed ID: 34609484 [TBL] [Abstract][Full Text] [Related]
8. Quantification of Carbon Nanotubes by Raman Analysis. Lynch JA; Birch QT; Ridgway TH; Birch ME Ann Work Expo Health; 2018 May; 62(5):604-612. PubMed ID: 29718067 [TBL] [Abstract][Full Text] [Related]
9. Detection of airborne carbon nanotubes based on the reactivity of the embedded catalyst. Neubauer N; Kasper G J Occup Environ Hyg; 2015; 12(3):182-8. PubMed ID: 25271474 [TBL] [Abstract][Full Text] [Related]
10. Detection of carbon nanotubes in environmental matrices using programmed thermal analysis. Doudrick K; Herckes P; Westerhoff P Environ Sci Technol; 2012 Nov; 46(22):12246-53. PubMed ID: 22663014 [TBL] [Abstract][Full Text] [Related]
11. Correlation between Graphitic Carbon and Elemental Carbon in Diesel Particulate Matter in Workplace Atmospheres. Zheng L; Birch ME; Johnson B; Breitenstein M; Snawder J; Kulkarni P Anal Chem; 2023 Feb; 95(6):3283-3290. PubMed ID: 36724111 [TBL] [Abstract][Full Text] [Related]
12. Near-Real Time Measurement of Carbonaceous Aerosol Using Microplasma Spectroscopy: Application to Measurement of Carbon Nanomaterials. Zheng L; Kulkarni P; Birch ME; Deye G; Dionysiou DD Aerosol Sci Technol; 2016 Aug; 50(11):1155-1166. PubMed ID: 28638174 [TBL] [Abstract][Full Text] [Related]
13. Quantitative evaluation of carbon nanomaterial releases during electric heating wire cutting and sawing machine cutting of expanded polystyrene-based composites using thermal carbon analysis. Ogura I; Kotake M; Ata S J Occup Environ Hyg; 2019 Feb; 16(2):165-178. PubMed ID: 30427298 [TBL] [Abstract][Full Text] [Related]
14. Use of Raman spectroscopy to identify carbon nanotube contamination at an analytical balance workstation. Braun EI; Huang A; Tusa CA; Yukica MA; Pantano P J Occup Environ Hyg; 2016 Dec; 13(12):915-923. PubMed ID: 27224520 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the capabilities of aerosol-to-liquid particle extraction system (ALPXS)/ICP-MS for monitoring trace metals in indoor air. Jayawardene I; Rasmussen PE; Chenier M; Gardner HD J Air Waste Manag Assoc; 2014 Sep; 64(9):1028-37. PubMed ID: 25283000 [TBL] [Abstract][Full Text] [Related]
16. Detection of Carbon Nanotubes in Indoor Workplaces Using Elemental Impurities. Rasmussen PE; Avramescu ML; Jayawardene I; Gardner HD Environ Sci Technol; 2015 Nov; 49(21):12888-96. PubMed ID: 26451679 [TBL] [Abstract][Full Text] [Related]
18. Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits. Dahm MM; Schubauer-Berigan MK; Evans DE; Birch ME; Fernback JE; Deddens JA Ann Occup Hyg; 2015 Jul; 59(6):705-23. PubMed ID: 25851309 [TBL] [Abstract][Full Text] [Related]
19. Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites. Thompson D; Chen SC; Wang J; Pui DY Ann Occup Hyg; 2015 Nov; 59(9):1135-51. PubMed ID: 26209597 [TBL] [Abstract][Full Text] [Related]
20. Detection of Multi-walled Carbon Nanotubes and Carbon Nanodiscs on Workplace Surfaces at a Small-Scale Producer. Hedmer M; Ludvigsson L; Isaxon C; Nilsson PT; Skaug V; Bohgard M; Pagels JH; Messing ME; Tinnerberg H Ann Occup Hyg; 2015 Aug; 59(7):836-52. PubMed ID: 26122528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]