These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 31502830)
21. Predicting Occupational Exposures to Carbon Nanotubes and Nanofibers Based on Workplace Determinants Modeling. Dahm MM; Bertke S; Schubauer-Berigan MK Ann Work Expo Health; 2019 Feb; 63(2):158-172. PubMed ID: 30715150 [TBL] [Abstract][Full Text] [Related]
22. Assessment of exhaust emissions from carbon nanotube production and particle collection by sampling filters. Tsai CS; Hofmann M; Hallock M; Ellenbecker M; Kong J J Air Waste Manag Assoc; 2015 Nov; 65(11):1376-85. PubMed ID: 26484976 [TBL] [Abstract][Full Text] [Related]
23. Exposure Assessment in a Single-Walled Carbon Nanotube Primary Manufacturer. Kouassi S; Catto C; Ostiguy C; L'Espérance G; Kroeger J; Debia M Ann Work Expo Health; 2017 Mar; 61(2):260-266. PubMed ID: 28395348 [TBL] [Abstract][Full Text] [Related]
24. Detection of single walled carbon nanotubes by monitoring embedded metals. Reed RB; Goodwin DG; Marsh KL; Capracotta SS; Higgins CP; Fairbrother DH; Ranville JF Environ Sci Process Impacts; 2013 Jan; 15(1):204-13. PubMed ID: 24592437 [TBL] [Abstract][Full Text] [Related]
25. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. Maynard AD; Baron PA; Foley M; Shvedova AA; Kisin ER; Castranova V J Toxicol Environ Health A; 2004 Jan; 67(1):87-107. PubMed ID: 14668113 [TBL] [Abstract][Full Text] [Related]
26. Workplace aerosol mass concentration measurement using optical particle counters. Görner P; Simon X; Bémer D; Lidén G J Environ Monit; 2012 Feb; 14(2):420-8. PubMed ID: 22009365 [TBL] [Abstract][Full Text] [Related]
27. Laser-induced breakdown spectroscopy for ambient air particulate monitoring: correlation of total and speciated aerosol particle counts. Hettinger B; Hohreiter V; Swingle M; Hahn DW Appl Spectrosc; 2006 Mar; 60(3):237-45. PubMed ID: 16608565 [TBL] [Abstract][Full Text] [Related]
28. Morphology, chemical composition and nanostructure of single carbon-rich particles studied by transmission electron microscopy: source apportionment in workroom air of aluminium smelters. Weinbruch S; Benker N; Kandler K; Ebert M; Ellingsen DG; Berlinger B; Thomassen Y Anal Bioanal Chem; 2016 Feb; 408(4):1151-8. PubMed ID: 26637216 [TBL] [Abstract][Full Text] [Related]
30. Exposure assessments for a cross-sectional epidemiologic study of US carbon nanotube and nanofiber workers. Dahm MM; Schubauer-Berigan MK; Evans DE; Birch ME; Bertke S; Beard JD; Erdely A; Fernback JE; Mercer RR; Grinshpun SA Int J Hyg Environ Health; 2018 Apr; 221(3):429-440. PubMed ID: 29339022 [TBL] [Abstract][Full Text] [Related]
31. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray. Chen BT; Schwegler-Berry D; Cumpston A; Cumpston J; Friend S; Stone S; Keane M J Occup Environ Hyg; 2016 Jul; 13(7):501-18. PubMed ID: 26873639 [TBL] [Abstract][Full Text] [Related]
32. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Jung JH; Hwang GB; Lee JE; Bae GN Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779 [TBL] [Abstract][Full Text] [Related]
33. An analytical system for single nanomaterials: combination of capillary electrophoresis with Raman spectroscopy or with scanning probe microscopy for individual single-walled carbon nanotube analysis. Yamamoto T; Murakami Y; Motoyanagi J; Fukushima T; Maruyama S; Kato M Anal Chem; 2009 Sep; 81(17):7336-41. PubMed ID: 19658407 [TBL] [Abstract][Full Text] [Related]
34. Exposure to inhalable aerosols and their chemical characteristics from different potential factors in urban office environments. Oh HJ; Jeong NN; Sohn JR; Roh JS; Kim J Environ Sci Pollut Res Int; 2019 Jul; 26(21):21750-21759. PubMed ID: 31134538 [TBL] [Abstract][Full Text] [Related]
35. Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition. Tsai SJ; Hofmann M; Hallock M; Ada E; Kong J; Ellenbecker M Environ Sci Technol; 2009 Aug; 43(15):6017-23. PubMed ID: 19731712 [TBL] [Abstract][Full Text] [Related]
36. Detection and characterization of nanomaterials released in low concentrations during multi-walled carbon nanotube spraying process in a cleanroom. Ji JH; Woo D; Lee SB; Kim T; Kim D; Kim JH; Bae GN Inhal Toxicol; 2013 Dec; 25(14):759-65. PubMed ID: 24304302 [TBL] [Abstract][Full Text] [Related]
37. Strain sensor of carbon nanotubes in microscale: from model to metrology. Qiu W; Li SL; Deng WL; Gao D; Kang YL ScientificWorldJournal; 2014; 2014():406154. PubMed ID: 24683338 [TBL] [Abstract][Full Text] [Related]
38. A proposal of method for evaluating airborne MWCNT concentration. Ono-Ogasawara M; Myojo T Ind Health; 2011; 49(6):726-34. PubMed ID: 22020016 [TBL] [Abstract][Full Text] [Related]
39. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials. Dillon AC; Yudasaka M; Dresselhaus MS J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946 [TBL] [Abstract][Full Text] [Related]
40. Short-term splenic impact of single-strand DNA functionalized multi-walled carbon nanotubes intraperitoneally injected in rats. Clichici S; Biris AR; Catoi C; Filip A; Tabaran F J Appl Toxicol; 2014 Apr; 34(4):332-44. PubMed ID: 23677818 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]