BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31502910)

  • 1. Increased torulene production by the red yeast,
    Wei C; Wu T; Ao H; Qian X; Wang Z; Sun J
    Prep Biochem Biotechnol; 2020; 50(1):66-73. PubMed ID: 31502910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carotenoids production in different culture conditions by Sporidiobolus pararoseus.
    Han M; He Q; Zhang WG
    Prep Biochem Biotechnol; 2012; 42(4):293-303. PubMed ID: 22708808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nitrogen on the lipid and carotenoid accumulation of oleaginous yeast Sporidiobolus pararoseus.
    Han M; Xu ZY; Du C; Qian H; Zhang WG
    Bioprocess Biosyst Eng; 2016 Sep; 39(9):1425-33. PubMed ID: 27145779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioconversion of biodiesel-derived crude glycerol into lipids and carotenoids by an oleaginous red yeast Sporidiobolus pararoseus KM281507 in an airlift bioreactor.
    Manowattana A; Techapun C; Watanabe M; Chaiyaso T
    J Biosci Bioeng; 2018 Jan; 125(1):59-66. PubMed ID: 28827048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of carotenoids and lipids production by oleaginous red yeast Sporidiobolus pararoseus KM281507.
    Chaiyaso T; Manowattana A
    Prep Biochem Biotechnol; 2018 Jan; 48(1):13-23. PubMed ID: 29035150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased torulene accumulation in red yeast Sporidiobolus pararoseus NGR as stress response to high salt conditions.
    Li C; Zhang N; Li B; Xu Q; Song J; Wei N; Wang W; Zou H
    Food Chem; 2017 Dec; 237():1041-1047. PubMed ID: 28763948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the wall-breaking method of carotenoids producing yeast
    Liu C; Cheng Y; Du C; Lv T; Guo Y; Han M; Pi F; Zhang W; Qian H
    Prep Biochem Biotechnol; 2019; 49(8):767-774. PubMed ID: 31050593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt stress increases carotenoid production of Sporidiobolus pararoseus NGR via torulene biosynthetic pathway.
    Li C; Li B; Zhang N; Wei N; Wang Q; Wang W; Xie Y; Zou H
    J Gen Appl Microbiol; 2019 Jul; 65(3):111-120. PubMed ID: 30487371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research advancements in the maintenance mechanism of Sporidiobolus pararoseus enhancing the quality of soy sauce during fermentation.
    Zhao S; Guo T; Yao Y; Dong B; Zhao G
    Int J Food Microbiol; 2024 Jun; 417():110690. PubMed ID: 38581832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. beta-Carotene production in sugarcane molasses by a Rhodotorula glutinis mutant.
    Bhosale P; Gadre RV
    J Ind Microbiol Biotechnol; 2001 Jun; 26(6):327-32. PubMed ID: 11571614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of several waste substrates for carotenoid-rich yeast biomass production.
    Marova I; Carnecka M; Halienova A; Certik M; Dvorakova T; Haronikova A
    J Environ Manage; 2012 Mar; 95 Suppl():S338-42. PubMed ID: 21741756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus.
    Buzzini P; Innocenti M; Turchetti B; Libkind D; van Broock M; Mulinacci N
    Can J Microbiol; 2007 Aug; 53(8):1024-31. PubMed ID: 17898860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and stoichiometric parameters in the production of carotenoids by Sporidiobolus salmonicolor (CBS 2636) in synthetic and agroindustrial media.
    Valduga E; Valério A; Treichel H; Furigo Júnior A; Di Luccio M
    Appl Biochem Biotechnol; 2009 Apr; 157(1):61-9. PubMed ID: 18841498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptome analysis revealed the improved β-carotene production in Sporidiobolus pararoseus yellow mutant MuY9.
    Li C; Li B; Zhang N; Wang Q; Wang W; Zou H
    J Gen Appl Microbiol; 2019 Jul; 65(3):121-128. PubMed ID: 30542003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characterization and evaluation of an astaxanthin over-producing Phaffia rhodozyma].
    Ni H; Hong Q; Xiao A; Li L; Cai H; Su W
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1065-75. PubMed ID: 22016991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing laccase production by white-rot fungus
    Zhang J; Ke W; Chen H
    Prep Biochem Biotechnol; 2020; 50(1):10-17. PubMed ID: 31430215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of Red Yeasts in Various Regions and Environments of Poland and Biotechnological Potential of the Isolated Strains.
    Kot AM; Sęk W; Kieliszek M; Błażejak S; Pobiega K; Brzezińska R
    Appl Biochem Biotechnol; 2024 Jun; 196(6):3274-3316. PubMed ID: 37646889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single desaturase gene from red yeast Sporidiobolus pararoseus is responsible for both four- and five-step dehydrogenation of phytoene.
    Li C; Zhang N; Song J; Wei N; Li B; Zou H; Han X
    Gene; 2016 Sep; 590(1):169-76. PubMed ID: 27346167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of whey ultrafiltrate as a substrate for production of carotenoids by the yeast Rhodotorula rubra.
    Frengova G; Simova E; Beshkova D
    Appl Biochem Biotechnol; 2004 Mar; 112(3):133-41. PubMed ID: 15007181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous.
    de la Fuente JL; Rodríguez-Sáiz M; Schleissner C; Díez B; Peiro E; Barredo JL
    J Biotechnol; 2010 Jul; 148(2-3):144-6. PubMed ID: 20510313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.