These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31502959)

  • 1. A Novel Approach to Accumulate Superparamagnetic Particles in Aqueous Environment Using Time-Varying Magnetic Field.
    Liu YL; Chen JJ; Ahmad F; Zhang TD; Guo WH; Ye YJ; Shang P; Yin DC
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1558-1564. PubMed ID: 31502959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FEM based simulation of magnetic drug targeting in a multibranched vessel model.
    Lindemann MC; Luttke T; Nottrodt N; Schmitz-Rode T; Slabu I
    Comput Methods Programs Biomed; 2021 Oct; 210():106354. PubMed ID: 34464768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cluster-cluster aggregations of superparamagnetic particles in a rotational magnetic field.
    Ukai T; Morimoto H; Maekawa T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061406. PubMed ID: 21797363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic Guiding with Permanent Magnets: Concept, Realization and Applications to Nanoparticles and Cells.
    Blümler P
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive approach to characterize navigation instruments for magnetic guidance in biological systems.
    Blümler P; Raudzus F; Schmid F
    Sci Rep; 2024 Apr; 14(1):7879. PubMed ID: 38570608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic Actuation System for Focused Capturing of Magnetic Particles With a Half of Static Saddle Potential Energy Configuration.
    Le TA; Bui MP; Yoon J
    IEEE Trans Biomed Eng; 2021 Mar; 68(3):869-880. PubMed ID: 32816673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolated swine heart ventricle perfusion model for implant assisted-magnetic drug targeting.
    Avilés MO; Mangual JO; Ebner AD; Ritter JA
    Int J Pharm; 2008 Sep; 361(1-2):202-8. PubMed ID: 18573319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of magnet systems for targeted drug delivery.
    Liu YL; Chen D; Shang P; Yin DC
    J Control Release; 2019 May; 302():90-104. PubMed ID: 30946854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and Applications of Superparamagnetic Iron Oxide Nanoparticles in Novel Drug Delivery Systems: An Overview.
    Hooshmand S; Hayat SMG; Ghorbani A; Khatami M; Pakravanan K; Darroudi M
    Curr Med Chem; 2021; 28(4):777-799. PubMed ID: 31971104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the magnetic aggregation of Fe
    Karvelas EG; Lampropoulos NK; Benos LT; Karakasidis T; Sarris IE
    Comput Methods Programs Biomed; 2021 Jan; 198():105778. PubMed ID: 33039920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now?
    Bietenbeck M; Florian A; Faber C; Sechtem U; Yilmaz A
    Int J Nanomedicine; 2016; 11():3191-203. PubMed ID: 27486321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization design of a permanent magnet used for a low field (0.2 T) movable MRI system.
    Wei S; Wei Z; Wang Z; Wang H; He Q; He H; Li L; Yang W
    MAGMA; 2023 Jul; 36(3):409-418. PubMed ID: 37081246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays.
    Barnsley LC; Carugo D; Aron M; Stride E
    Phys Med Biol; 2017 Mar; 62(6):2333-2360. PubMed ID: 28141578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Assessment of Magnetic Nanoparticle Targeting Efficiency in a Simplified Circle of Willis Arterial Model.
    Hewlin RL; Tindall JM
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical method for fabricating superparamagnetic films and the mechanism involved.
    Jiang PC; Chang CH; Hsieh CY; Su WB; Tsay JS
    Nanoscale; 2020 Jul; 12(26):14096-14105. PubMed ID: 32584333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tolerability to non-endosomal, micron-scale cell penetration probed with magnetic particles.
    Ruiz-Cánovas E; Mendoza R; Villaverde A; Corchero JL
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112123. PubMed ID: 34571468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Hybrid System for the Magnetic Characterization of Superparamagnetic Nanoparticles.
    Midura M; Wróblewski P; Wanta D; Kryszyn J; Smolik WT; Domański G; Wieteska M; Obrębski W; Piątkowska-Janko E; Bogorodzki P
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MagTetris: A simulator for fast magnetic field and force calculation for permanent magnet array designs.
    Liang TO; Koh YH; Qiu T; Li E; Yu W; Huang SY
    J Magn Reson; 2023 Jul; 352():107463. PubMed ID: 37207466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force.
    Zhang K; Liang Q; Ma S; Mu X; Hu P; Wang Y; Luo G
    Lab Chip; 2009 Oct; 9(20):2992-9. PubMed ID: 19789755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Manipulation of Particles and Cells at Micro- and Nanoscale via Magnetic Forces.
    Panina LV; Gurevich A; Beklemisheva A; Omelyanchik A; Levada K; Rodionova V
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.