These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31502959)

  • 21. Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy.
    Manshadi MKD; Saadat M; Mohammadi M; Shamsi M; Dejam M; Kamali R; Sanati-Nezhad A
    Drug Deliv; 2018 Nov; 25(1):1963-1973. PubMed ID: 30799655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving the Size Homogeneity of Multicore Superparamagnetic Iron Oxide Nanoparticles.
    Yeh BJ; Anani T; David AE
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32423113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of magnetically driven passage of magnetic nanoparticles through eye tissues for magnetic drug targeting.
    Zahn D; Klein K; Radon P; Berkov D; Erokhin S; Nagel E; Eichhorn M; Wiekhorst F; Dutz S
    Nanotechnology; 2020 Dec; 31(49):495101. PubMed ID: 32946423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and
    Han X; Yao P; Cheng C; Yuan H; Yang Y; Ni C
    J Nanosci Nanotechnol; 2018 Feb; 18(2):879-886. PubMed ID: 29448510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical Simulation of Magnetic Drug Targeting to the Stenosis Vessel Using Fe
    Badfar H; Yekani Motlagh S; Sharifi A
    Cardiovasc Eng Technol; 2020 Apr; 11(2):162-175. PubMed ID: 31853904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field.
    Mizuki T; Watanabe N; Nagaoka Y; Fukushima T; Morimoto H; Usami R; Maekawa T
    Biochem Biophys Res Commun; 2010 Mar; 393(4):779-82. PubMed ID: 20171160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remote manipulation of posterior lamellar corneal grafts using a magnetic field.
    Nahum Y; Barliya T; Bahar I; Livnat T; Nisgav Y; Weinberger D
    Cornea; 2013 Jun; 32(6):851-4. PubMed ID: 23538632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.
    Smid P; Shcherbakov V; Petersen N
    Rev Sci Instrum; 2015 Sep; 86(9):095106. PubMed ID: 26429479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CFPD simulation of magnetic drug delivery to a human lung using an SAW nebulizer.
    Mohammadian M; Pourmehran O
    Biomech Model Mechanobiol; 2019 Jun; 18(3):547-562. PubMed ID: 30506148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hemodynamic Effects on Particle Targeting in the Arterial Bifurcation for Different Magnet Positions.
    Bernad SI; Susan-Resiga D; Bernad ES
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31324029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.
    Vogel MW; Giorni A; Vegh V; Pellicer-Guridi R; Reutens DC
    PLoS One; 2016; 11(6):e0157040. PubMed ID: 27271886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Source Structure Design of the Rotating Magnetic Beacon Based on Phase-Shift Direction Finding System.
    Li B; Yang B; Xiang F; Guo J; Li H
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The force-distance properties of attracting magnetic attachments for tooth movement in combination with clear sequential aligners.
    Phelan A; Petocz P; Walsh W; Darendeliler MA
    Aust Orthod J; 2012 Nov; 28(2):159-69. PubMed ID: 23304964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled release of chlorhexidine from a HEMA-UDMA resin using a magnetic field.
    Luo D; Shahid S; Hasan SM; Whiley R; Sukhorukov GB; Cattell MJ
    Dent Mater; 2018 May; 34(5):764-775. PubMed ID: 29496224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical simulation of superparamagnetic nanoparticle motion in blood vessels for magnetic drug delivery.
    Lee M; Shelke A; Singh S; Fan J; Zaleski P; Afkhami S
    Phys Rev E; 2022 Jul; 106(1-2):015104. PubMed ID: 35974570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fe
    Jiang P; Zhang Y; Zhu C; Zhang W; Mao Z; Gao C
    Acta Biomater; 2016 Dec; 46():141-150. PubMed ID: 27646502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetically programmed superparamagnetic behavior of mammalian cells.
    Kim T; Moore D; Fussenegger M
    J Biotechnol; 2012 Dec; 162(2-3):237-45. PubMed ID: 23036923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model-based optimized steering and focusing of local magnetic particle concentrations for targeted drug delivery.
    Van Durme R; Crevecoeur G; Dupré L; Coene A
    Drug Deliv; 2021 Dec; 28(1):63-76. PubMed ID: 33342319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative modeling and optimization of magnetic tweezers.
    Lipfert J; Hao X; Dekker NH
    Biophys J; 2009 Jun; 96(12):5040-9. PubMed ID: 19527664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uniform magnetic targeting of magnetic particles attracted by a new ferromagnetic biological patch.
    Pei N; Cai L; Yang K; Ma J; Gong Y; Wang Q; Huang Z
    Bioelectromagnetics; 2018 Feb; 39(2):98-107. PubMed ID: 29251353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.