These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 31502966)
1. Enhancement of Acoustic Microscopy Lateral Resolution: A Comparison Between Deep Learning and Two Deconvolution Methods. Makra A; Bost W; Kallo I; Horvath A; Fournelle M; Gyongy M IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):136-145. PubMed ID: 31502966 [TBL] [Abstract][Full Text] [Related]
2. Determining sodium diffusion through acoustic impedance measurements using 80 MHz Scanning Acoustic Microscopy: Agarose phantom verification. Demirkan I; Unlu MB; Bilen B Ultrasonics; 2019 Apr; 94():10-19. PubMed ID: 30606650 [TBL] [Abstract][Full Text] [Related]
3. A Convolutional Neural Network for 250-MHz Quantitative Acoustic-microscopy Resolution Enhancement. Mamou J; Pellegrini T; Kouame D; Basarab A Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6212-6215. PubMed ID: 31947262 [TBL] [Abstract][Full Text] [Related]
4. Material Properties of Human Ocular Tissue at 7-µm Resolution. Rohrbach D; Ito K; Lloyd HO; Silverman RH; Yoshida K; Yamaguchi T; Mamou J Ultrason Imaging; 2017 Sep; 39(5):313-325. PubMed ID: 28675987 [TBL] [Abstract][Full Text] [Related]
5. High-speed simultaneous multiscale photoacoustic microscopy. Moothanchery M; Bi R; Kim JY; Balasundaram G; Kim C; Olivo M J Biomed Opt; 2019 Aug; 24(8):1-7. PubMed ID: 31429217 [TBL] [Abstract][Full Text] [Related]
6. High-resolution bathymetry by deep-learning-based image superresolution. Sonogashira M; Shonai M; Iiyama M PLoS One; 2020; 15(7):e0235487. PubMed ID: 32609752 [TBL] [Abstract][Full Text] [Related]
7. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation muCT. Raum K; Leguerney I; Chandelier F; Talmant M; Saïed A; Peyrin F; Laugier P Phys Med Biol; 2006 Feb; 51(3):733-46. PubMed ID: 16424592 [TBL] [Abstract][Full Text] [Related]
8. High-throughput ultraviolet photoacoustic microscopy with multifocal excitation. Imai T; Shi J; Wong TTW; Li L; Zhu L; Wang LV J Biomed Opt; 2018 Mar; 23(3):1-6. PubMed ID: 29546734 [TBL] [Abstract][Full Text] [Related]
9. High-resolution optoacoustic mesoscopy with a 24 MHz multidetector translate-rotate scanner. Gateau J; Chekkoury A; Ntziachristos V J Biomed Opt; 2013 Oct; 18(10):106005. PubMed ID: 24096299 [TBL] [Abstract][Full Text] [Related]
10. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model. Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585 [TBL] [Abstract][Full Text] [Related]
11. Multi-layer phase analysis: quantifying the elastic properties of soft tissues and live cells with ultra-high-frequency scanning acoustic microscopy. Zhao X; Akhtar R; Nijenhuis N; Wilkinson SJ; Murphy L; Ballestrem C; Sherratt MJ; Watson RE; Derby B IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):610-20. PubMed ID: 22547273 [TBL] [Abstract][Full Text] [Related]
12. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. Gong E; Pauly JM; Wintermark M; Zaharchuk G J Magn Reson Imaging; 2018 Aug; 48(2):330-340. PubMed ID: 29437269 [TBL] [Abstract][Full Text] [Related]
13. Automatic ground truth for deep learning stereology of immunostained neurons and microglia in mouse neocortex. Ahmady Phoulady H; Goldgof D; Hall LO; Mouton PR J Chem Neuroanat; 2019 Jul; 98():1-7. PubMed ID: 30836126 [TBL] [Abstract][Full Text] [Related]
14. Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer. Zemp RJ; Bitton R; Li ML; Shung KK; Stoica G; Wang LV J Biomed Opt; 2007; 12(1):010501. PubMed ID: 17343475 [TBL] [Abstract][Full Text] [Related]
15. Fiber bundle image restoration using deep learning. Shao J; Zhang J; Huang X; Liang R; Barnard K Opt Lett; 2019 Mar; 44(5):1080-1083. PubMed ID: 30821775 [TBL] [Abstract][Full Text] [Related]
16. Callus mineralization following distraction osteogenesis of the mandible monitored by scanning acoustic microscopy (SAM). Adolphs N; Kunz C; Pyk P; Hammer B; Rahn B J Craniomaxillofac Surg; 2005 Oct; 33(5):314-7. PubMed ID: 16125397 [TBL] [Abstract][Full Text] [Related]
17. Comparison of scanning acoustic microscopy and histology images in characterizing surface irregularities among engineered human oral mucosal tissues. Winterroth F; Hollman KW; Kuo S; Izumi K; Feinberg SE; Hollister SJ; Fowlkes JB Ultrasound Med Biol; 2011 Oct; 37(10):1734-42. PubMed ID: 21871704 [TBL] [Abstract][Full Text] [Related]
18. Assessment of bone structure and acoustic impedance in C3H and BL6 mice using high resolution scanning acoustic microscopy. Hofman T; Raum K; Leguerney I; Saïed A; Peyrin F; Vico L; Laugier P Ultrasonics; 2006 Dec; 44 Suppl 1():e1307-11. PubMed ID: 16782152 [TBL] [Abstract][Full Text] [Related]
19. Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone. Saïed A; Raum K; Leguerney I; Laugier P Bone; 2008 Jul; 43(1):187-194. PubMed ID: 18407822 [TBL] [Abstract][Full Text] [Related]
20. In vivo deconvolution acoustic-resolution photoacoustic microscopy in three dimensions. Cai D; Li Z; Chen SL Biomed Opt Express; 2016 Feb; 7(2):369-80. PubMed ID: 26977346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]