BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31502977)

  • 1. Varifocal Occlusion-Capable Optical See-through Augmented Reality Display based on Focus-tunable Optics.
    Rathinavel K; Wetzstein G; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3125-3134. PubMed ID: 31502977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Varifocal Occlusion for Optical See-Through Head-Mounted Displays using a Slide Occlusion Mask.
    Hamasaki T; Itoh Y
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):1961-1969. PubMed ID: 30946658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factored Occlusion: Single Spatial Light Modulator Occlusion-capable Optical See-through Augmented Reality Display.
    Krajancich B; Padmanaban N; Wetzstein G
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):1871-1879. PubMed ID: 32070978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and prototype of an augmented reality display with per-pixel mutual occlusion capability.
    Wilson A; Hua H
    Opt Express; 2017 Nov; 25(24):30539-30549. PubMed ID: 29221081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-depth and vari-focal head-mounted displays based on geometrical lightguides.
    Xu M; Hua H
    Opt Express; 2020 Apr; 28(8):12121-12137. PubMed ID: 32403712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical see-through augmented reality displays with wide field of view and hard-edge occlusion by using paired conical reflectors.
    Zhang Y; Hu X; Kiyokawa K; Isoyama N; Sakata N; Hua H
    Opt Lett; 2021 Sep; 46(17):4208-4211. PubMed ID: 34469976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid crystal lens set in augmented reality systems and virtual reality systems for rapidly varifocal images and vision correction.
    Lin YH; Huang TW; Huang HH; Wang YJ
    Opt Express; 2022 Jun; 30(13):22768-22778. PubMed ID: 36224967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Add-on Occlusion: Turning Off-the-Shelf Optical See-through Head-mounted Displays Occlusion-capable.
    Zhang Y; Hu X; Kiyokawa K; Yang X
    IEEE Trans Vis Comput Graph; 2023 Feb; PP():. PubMed ID: 37027617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.
    Shen X; Javidi B
    Appl Opt; 2018 Mar; 57(7):B184-B189. PubMed ID: 29521988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Varifocal augmented reality adopting electrically tunable uniaxial plane-parallel plates.
    Wang YJ; Lin YH; Cakmakci O; Reshetnyak V
    Opt Express; 2020 Jul; 28(15):23023-23036. PubMed ID: 32752553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Eye Vergence and Accommodation on Interactions with Content on an AR Magic-lens Display and its Surroundings.
    Lugtenberg G; Copic Pucihar K; Kljun M; Sawabe T; Fujimoto Y; Kanbara M; Kato H
    IEEE Trans Vis Comput Graph; 2024 May; PP():. PubMed ID: 38771678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and tolerance of a free-form optical system for an optical see-through multi-focal-plane display.
    Hu X; Hua H
    Appl Opt; 2015 Nov; 54(33):9990-9. PubMed ID: 26836568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occlusion-capable optical-see-through near-eye display using a single digital micromirror device.
    Ju YG; Choi MH; Liu P; Hellman B; Lee TL; Takashima Y; Park JH
    Opt Lett; 2020 Jul; 45(13):3361-3364. PubMed ID: 32630845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Focal Distance on Near-Field Depth Perception and Accommodative Response in a VariFocal Optical See-Through Augmented Reality Display.
    Lee S; Hua H
    IEEE Trans Vis Comput Graph; 2024 Jun; PP():. PubMed ID: 38865223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-colour 3D holographic augmented-reality displays with metasurface waveguides.
    Gopakumar M; Lee GY; Choi S; Chao B; Peng Y; Kim J; Wetzstein G
    Nature; 2024 May; 629(8013):791-797. PubMed ID: 38720077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Range Augmented Reality with Dynamic Occlusion Rendering.
    Sizintsev M; Mithun NC; Chiu HP; Samarasekera S; Kumar R
    IEEE Trans Vis Comput Graph; 2021 Nov; 27(11):4236-4244. PubMed ID: 34449369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented Reality and Virtual Reality Displays: Perspectives and Challenges.
    Zhan T; Yin K; Xiong J; He Z; Wu ST
    iScience; 2020 Aug; 23(8):101397. PubMed ID: 32759057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Video See-Through Mixed Reality with Focus Cues.
    Ebner C; Mori S; Mohr P; Peng Y; Schmalstieg D; Wetzstein G; Kalkofen D
    IEEE Trans Vis Comput Graph; 2022 May; 28(5):2256-2266. PubMed ID: 35167471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a Pupil-Matched Occlusion-Capable Optical See-Through Wearable Display.
    Wilson A; Hua H
    IEEE Trans Vis Comput Graph; 2022 Dec; 28(12):4113-4126. PubMed ID: 33905332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Impact of Focus and Context Visualization Techniques on Depth Perception in Optical See-Through Head-Mounted Displays.
    Martin-Gomez A; Weiss J; Keller A; Eck U; Roth D; Navab N
    IEEE Trans Vis Comput Graph; 2022 Dec; 28(12):4156-4171. PubMed ID: 33979287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.