BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 3150300)

  • 1. Influence of experimental diabetes on the mechanical responses of canine coronary arteries: role of endothelium.
    Gebremedhin D; Koltai MZ; Pogátsa G; Magyar K; Hadházy P
    Cardiovasc Res; 1988 Aug; 22(8):537-44. PubMed ID: 3150300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute impairment of endothelium-dependent relaxations to aggregating platelets following reperfusion injury in canine coronary arteries.
    Pearson PJ; Schaff HV; Vanhoutte PM
    Circ Res; 1990 Aug; 67(2):385-93. PubMed ID: 2115821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contractile and relaxant responses of diabetic dog femoral arteries.
    Gebremedhin D; Hadházy P; Koltai MZ; Pogátsa G
    Acta Physiol Hung; 1988; 71(2):213-7. PubMed ID: 3389165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered responsiveness of diabetic dog renal arteries to acetylcholine and phenylephrine: role of endothelium.
    Gebremedhin D; Koltai MZ; Pogátsa G; Magyar K; Hadházy P
    Pharmacology; 1989; 38(3):177-84. PubMed ID: 2727056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelium-removal decreases relaxations of canine coronary arteries caused by beta-adrenergic agonists and adenosine.
    Rubanyi G; Vanhoutte PM
    J Cardiovasc Pharmacol; 1985; 7(1):139-44. PubMed ID: 2580134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of responses to acetylcholine and serotonin on isolated canine and human coronary arteries.
    Berkenboom G; Unger P; Fang ZY; Degre S; Fontaine J
    Cardiovasc Res; 1989 Sep; 23(9):780-7. PubMed ID: 2482133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phorbol dibutyrate inhibits release and action of endothelium-derived relaxing factor(s) in canine blood vessels.
    Rubanyi GM; Desiderio D; Luisi A; Johns A; Sybertz EJ
    J Pharmacol Exp Ther; 1989 Jun; 249(3):858-63. PubMed ID: 2499677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of oxygen tension on endothelium dependent responses in canine coronary microvessels.
    Myers PR; Muller JM; Tanner MA
    Cardiovasc Res; 1991 Nov; 25(11):885-94. PubMed ID: 1813116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetylcholine-induced endothelium-independent relaxations in monkey isolated superior and inferior caval veins.
    Fukushima S; Ohhashi T
    Br J Pharmacol; 1993 Aug; 109(4):992-7. PubMed ID: 8401953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperglycaemia alters the endothelium-dependent relaxation of canine coronary arteries.
    Kocsis E; Pacher P; Pósa I; Nieszner E; Pogátsa G; Koltai MZ
    Acta Physiol Scand; 2000 Jul; 169(3):183-7. PubMed ID: 10886032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired contraction and endothelium-dependent relaxation in isolated resistance vessels from patients with insulin-dependent diabetes mellitus.
    McNally PG; Watt PA; Rimmer T; Burden AC; Hearnshaw JR; Thurston H
    Clin Sci (Lond); 1994 Jul; 87(1):31-6. PubMed ID: 8062516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ouabain inhibits endothelium-dependent relaxations to arachidonic acid in canine coronary arteries.
    Rubanyi GM; Vanhoutte PM
    J Pharmacol Exp Ther; 1985 Oct; 235(1):81-6. PubMed ID: 3930700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory role of the coronary arterial endothelium to alpha-adrenergic stimulation in experimental heart failure.
    Main JS; Forster C; Armstrong PW
    Circ Res; 1991 Apr; 68(4):940-6. PubMed ID: 1849059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased production of nitric oxide in coronary arteries during congestive heart failure.
    O'Murchu B; Miller VM; Perrella MA; Burnett JC
    J Clin Invest; 1994 Jan; 93(1):165-71. PubMed ID: 8282783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Endothelium-derived relaxation of canine uterine artery and arachidonic acid metabolism].
    Matsumoto T; Kanamaru K; Yanou K; Yanase H; Itou M; Sugiyama Y
    Nihon Sanka Fujinka Gakkai Zasshi; 1987 Oct; 39(10):1784-90. PubMed ID: 3123576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of magnesium on basal and agonist-induced EDRF relaxation in canine coronary arteries.
    Ku DD; Ann HS
    J Cardiovasc Pharmacol; 1991 Jun; 17(6):999-1006. PubMed ID: 1714027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impairment of endothelium-dependent relaxation of superior mesenteric artery in genetically diabetic WBN/Kob rats.
    Miyata N; Yamaura H; Tsuchida K; Okuyama S; Otomo S; Kamata K; Kasuya Y
    Can J Physiol Pharmacol; 1993; 71(3-4):297-300. PubMed ID: 8402395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium channels sensitive to combination of charybdotoxin and apamin regulate the tone of diabetic isolated canine coronary arteries.
    Pataricza J; Márton Z; Lengyel C; Tóth M; Papp JG; Varró A; Kun A
    Acta Physiol (Oxf); 2008 Sep; 194(1):35-43. PubMed ID: 18394024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low level hyperlipidemia impairs endothelium-dependent relaxation of porcine coronary arteries by two mechanisms. Functional change in endothelium and impairment of endothelium-dependent relaxation by two mediators.
    Hayashi T; Ishikawa T; Naito M; Kuzuya M; Funaki C; Asai K; Hidaka H; Kuzuya F
    Atherosclerosis; 1991 Mar; 87(1):23-38. PubMed ID: 1714735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nebivolol induces endothelium-dependent relaxations of canine coronary arteries.
    Gao YS; Nagao T; Bond RA; Janssens WJ; Vanhoutte PM
    J Cardiovasc Pharmacol; 1991 Jun; 17(6):964-9. PubMed ID: 1714022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.