BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31503005)

  • 21. Suppression of tumorigenesis in mitochondrial NADP(+)-dependent isocitrate dehydrogenase knock-out mice.
    Kim S; Kim SY; Ku HJ; Jeon YH; Lee HW; Lee J; Kwon TK; Park KM; Park JW
    Biochim Biophys Acta; 2014 Feb; 1842(2):135-43. PubMed ID: 24240089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen alleviates cellular senescence via regulation of ROS/p53/p21 pathway in bone marrow-derived mesenchymal stem cells in vivo.
    Zhang W; Huang C; Sun A; Qiao L; Zhang X; Huang J; Sun X; Yang X; Sun S
    Biomed Pharmacother; 2018 Oct; 106():1126-1134. PubMed ID: 30119179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis.
    Araya J; Tsubouchi K; Sato N; Ito S; Minagawa S; Hara H; Hosaka Y; Ichikawa A; Saito N; Kadota T; Yoshida M; Fujita Y; Utsumi H; Kobayashi K; Yanagisawa H; Hashimoto M; Wakui H; Ishikawa T; Numata T; Kaneko Y; Asano H; Yamashita M; Odaka M; Morikawa T; Nishimura SL; Nakayama K; Kuwano K
    Autophagy; 2019 Mar; 15(3):510-526. PubMed ID: 30290714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial NADP
    Han SJ; Jang HS; Noh MR; Kim J; Kong MJ; Kim JI; Park JW; Park KM
    J Am Soc Nephrol; 2017 Apr; 28(4):1200-1215. PubMed ID: 27821630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peroxiredoxin I participates in the protection of reactive oxygen species-mediated cellular senescence.
    Park YH; Kim HS; Lee JH; Choi SA; Kim JM; Oh GT; Kang SW; Kim SU; Yu DY
    BMB Rep; 2017 Oct; 50(10):528-533. PubMed ID: 28893373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactive oxygen species promotes cellular senescence in normal human epidermal keratinocytes through epigenetic regulation of p16(INK4a.).
    Sasaki M; Kajiya H; Ozeki S; Okabe K; Ikebe T
    Biochem Biophys Res Commun; 2014 Sep; 452(3):622-8. PubMed ID: 25181340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of replicative senescence by NADP+ -dependent isocitrate dehydrogenase.
    Kil IS; Huh TL; Lee YS; Lee YM; Park JW
    Free Radic Biol Med; 2006 Jan; 40(1):110-9. PubMed ID: 16337884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Caveolin-1 deficiency induces premature senescence with mitochondrial dysfunction.
    Yu DM; Jung SH; An HT; Lee S; Hong J; Park JS; Lee H; Lee H; Bahn MS; Lee HC; Han NK; Ko J; Lee JS; Ko YG
    Aging Cell; 2017 Aug; 16(4):773-784. PubMed ID: 28514055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutant p53 can delay growth arrest and loss of CDK2 activity in senescing human fibroblasts without reducing p21(WAF1) expression.
    Wyllie F; Haughton M; Bartek J; Rowson J; Wynford-Thomas D
    Exp Cell Res; 2003 May; 285(2):236-42. PubMed ID: 12706118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Premature senescence in human breast cancer and colon cancer cells by tamoxifen-mediated reactive oxygen species generation.
    Lee YH; Kang BS; Bae YS
    Life Sci; 2014 Mar; 97(2):116-22. PubMed ID: 24361399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial NADP
    Kong MJ; Han SJ; Kim JI; Park JW; Park KM
    Cell Death Dis; 2018 May; 9(5):488. PubMed ID: 29695796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial NADP(+)-dependent isocitrate dehydrogenase knockdown inhibits tumorigenicity of melanoma cells.
    Kim SH; Yoo YH; Lee JH; Park JW
    Biochem Biophys Res Commun; 2014 Aug; 451(2):246-51. PubMed ID: 25086359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway.
    Handayaningsih AE; Takahashi M; Fukuoka H; Iguchi G; Nishizawa H; Yamamoto M; Suda K; Takahashi Y
    Biochem Biophys Res Commun; 2012 Aug; 425(2):478-84. PubMed ID: 22877754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence.
    Kortlever RM; Higgins PJ; Bernards R
    Nat Cell Biol; 2006 Aug; 8(8):877-84. PubMed ID: 16862142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased obesity resistance and insulin sensitivity in mice lacking the isocitrate dehydrogenase 2 gene.
    Lee SJ; Kim SH; Park KM; Lee JH; Park JW
    Free Radic Biol Med; 2016 Oct; 99():179-188. PubMed ID: 27519270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence.
    Macip S; Igarashi M; Fang L; Chen A; Pan ZQ; Lee SW; Aaronson SA
    EMBO J; 2002 May; 21(9):2180-8. PubMed ID: 11980715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isocitrate dehydrogenase 2 contributes to radiation resistance of oesophageal squamous cell carcinoma via regulating mitochondrial function and ROS/pAKT signalling.
    Chen X; Zhuo S; Xu W; Chen X; Huang D; Sun X; Cheng Y
    Br J Cancer; 2020 Jul; 123(1):126-136. PubMed ID: 32367071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acrylamide Induces Senescence in Macrophages through a Process Involving ATF3, ROS, p38/JNK, and a Telomerase-Independent Pathway.
    Kim KH; Park B; Rhee DK; Pyo S
    Chem Res Toxicol; 2015 Jan; 28(1):71-86. PubMed ID: 25531190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isocitrate dehydrogenase 2 deficiency aggravates prolonged high-fat diet intake-induced hypertension.
    Noh MR; Kong MJ; Han SJ; Kim JI; Park KM
    Redox Biol; 2020 Jul; 34():101548. PubMed ID: 32388270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. IDH2 knockdown sensitizes tumor cells to emodin cytotoxicity in vitro and in vivo.
    Ku HJ; Kwon OS; Kang BS; Lee DS; Lee HS; Park JW
    Free Radic Res; 2016 Oct; 50(10):1089-1097. PubMed ID: 27087448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.