These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 31503376)

  • 1. 2D Freestanding Janus Gold Nanocrystal Superlattices.
    Shi Q; Gómez DE; Dong D; Sikdar D; Fu R; Liu Y; Zhao Y; Smilgies DM; Cheng W
    Adv Mater; 2019 Sep; 31(37):e1904636. PubMed ID: 31503376
    [No Abstract]   [Full Text] [Related]  

  • 2. 2D Freestanding Janus Gold Nanocrystal Superlattices.
    Shi Q; Gómez DE; Dong D; Sikdar D; Fu R; Liu Y; Zhao Y; Smilgies DM; Cheng W
    Adv Mater; 2019 Jul; 31(28):e1900989. PubMed ID: 31070276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substitutional doping in nanocrystal superlattices.
    Cargnello M; Johnston-Peck AC; Diroll BT; Wong E; Datta B; Damodhar D; Doan-Nguyen VV; Herzing AA; Kagan CR; Murray CB
    Nature; 2015 Aug; 524(7566):450-3. PubMed ID: 26310766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and in situ observation of 3D superlattices of gold nanoparticles using oil-in-water emulsion.
    Dutta A; Chakraborty J; Prasad BL; Sahu P
    J Colloid Interface Sci; 2014 Apr; 420():41-9. PubMed ID: 24559698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bistable magnetoresistance switching in exchange-coupled CoFe₂O₄--Fe₃O₄ binary nanocrystal superlattices by self-assembly and thermal annealing.
    Chen J; Ye X; Oh SJ; Kikkawa JM; Kagan CR; Murray CB
    ACS Nano; 2013 Feb; 7(2):1478-86. PubMed ID: 23273052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation.
    Kang Y; Ye X; Chen J; Qi L; Diaz RE; Doan-Nguyen V; Xing G; Kagan CR; Li J; Gorte RJ; Stach EA; Murray CB
    J Am Chem Soc; 2013 Jan; 135(4):1499-505. PubMed ID: 23294105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical self-assembly of nanocrystal superlattices during colloidal droplet evaporation by in situ small angle x-ray scattering.
    Narayanan S; Wang J; Lin XM
    Phys Rev Lett; 2004 Sep; 93(13):135503. PubMed ID: 15524734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural control of nanocrystal superlattices using organic guest molecules.
    Nagaoka Y; Chen O; Wang Z; Cao YC
    J Am Chem Soc; 2012 Feb; 134(6):2868-71. PubMed ID: 22283741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Halides in the Ordered Structure Transitions of Heated Gold Nanocrystal Superlattices.
    Yu Y; Goodfellow BW; Rasch MR; Bosoy C; Smilgies DM; Korgel BA
    Langmuir; 2015 Jun; 31(24):6924-32. PubMed ID: 26013597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tubular Monolayer Superlattices of Hollow Mn
    Li T; Xue B; Wang B; Guo G; Han D; Yan Y; Dong A
    J Am Chem Soc; 2017 Sep; 139(35):12133-12136. PubMed ID: 28837323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of high-index faceted gold nanocrystals to fabricate tunable coupled plasmonic superlattices.
    Zhang H; Guan C; Song N; Zhang Y; Liu H; Fang J
    Phys Chem Chem Phys; 2018 Jan; 20(5):3571-3580. PubMed ID: 29337328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of low-symmetric 2D superlattices of gold nanoparticles through surface modification by acid-base interaction.
    Kanehara M; Oumi Y; Sano T; Teranishi T
    J Am Chem Soc; 2003 Jul; 125(29):8708-9. PubMed ID: 12862449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic Cracking of Nanocrystal Superlattices.
    Diroll BT; Ma X; Wu Y; Murray CB
    Nano Lett; 2017 Oct; 17(10):6501-6506. PubMed ID: 28921994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size dependent elastic moduli of CdSe nanocrystal superlattices predicted from atomistic and coarse grained models.
    Zanjani MB; Lukes JR
    J Chem Phys; 2013 Oct; 139(14):144702. PubMed ID: 24116636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-temperature crystallization of nanocrystals into three-dimensional superlattices.
    Wu L; Willis JJ; McKay IS; Diroll BT; Qin J; Cargnello M; Tassone CJ
    Nature; 2017 Aug; 548(7666):197-201. PubMed ID: 28759888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordered structure rearrangements in heated gold nanocrystal superlattices.
    Goodfellow BW; Rasch MR; Hessel CM; Patel RN; Smilgies DM; Korgel BA
    Nano Lett; 2013; 13(11):5710-4. PubMed ID: 24131332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible, Tunable, Electric-Field Driven Assembly of Silver Nanocrystal Superlattices.
    Yu Y; Yu D; Orme CA
    Nano Lett; 2017 Jun; 17(6):3862-3869. PubMed ID: 28511013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A coarse-grained simulation for tensile behavior of 2D Au nanocrystal superlattices.
    Liu XP; Ni Y; He LH
    Nanotechnology; 2014 Nov; 25(47):475704. PubMed ID: 25379687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Space- and time-resolved small angle X-ray scattering to probe assembly of silver nanocrystal superlattices.
    Yu Y; Yu D; Sadigh B; Orme CA
    Nat Commun; 2018 Oct; 9(1):4211. PubMed ID: 30310061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced thermopower in PbSe nanocrystal quantum dot superlattices.
    Wang RY; Feser JP; Lee JS; Talapin DV; Segalman R; Majumdar A
    Nano Lett; 2008 Aug; 8(8):2283-8. PubMed ID: 18597536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.