These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 31503385)
41. Hsp70 and Hsp90 of E. coli Directly Interact for Collaboration in Protein Remodeling. Genest O; Hoskins JR; Kravats AN; Doyle SM; Wickner S J Mol Biol; 2015 Dec; 427(24):3877-89. PubMed ID: 26482100 [TBL] [Abstract][Full Text] [Related]
42. The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. McLaughlin SH; Sobott F; Yao ZP; Zhang W; Nielsen PR; Grossmann JG; Laue ED; Robinson CV; Jackson SE J Mol Biol; 2006 Feb; 356(3):746-58. PubMed ID: 16403413 [TBL] [Abstract][Full Text] [Related]
43. hsp70 interacting protein Hip does not affect glucocorticoid receptor folding by the hsp90-based chaperone machinery except to oppose the effect of BAG-1. Kanelakis KC; Murphy PJ; Galigniana MD; Morishima Y; Takayama S; Reed JC; Toft DO; Pratt WB Biochemistry; 2000 Nov; 39(46):14314-21. PubMed ID: 11087380 [TBL] [Abstract][Full Text] [Related]
44. Dual Roles for Yeast Sti1/Hop in Regulating the Hsp90 Chaperone Cycle. Reidy M; Kumar S; Anderson DE; Masison DC Genetics; 2018 Aug; 209(4):1139-1154. PubMed ID: 29930177 [TBL] [Abstract][Full Text] [Related]
45. Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system. Mandal AK; Gibney PA; Nillegoda NB; Theodoraki MA; Caplan AJ; Morano KA Mol Biol Cell; 2010 May; 21(9):1439-48. PubMed ID: 20237159 [TBL] [Abstract][Full Text] [Related]
46. Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain. Krois AS; Dyson HJ; Wright PE Proc Natl Acad Sci U S A; 2018 Nov; 115(48):E11302-E11310. PubMed ID: 30420502 [TBL] [Abstract][Full Text] [Related]
47. Structural and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants. Kadota Y; Amigues B; Ducassou L; Madaoui H; Ochsenbein F; Guerois R; Shirasu K EMBO Rep; 2008 Dec; 9(12):1209-15. PubMed ID: 18833289 [TBL] [Abstract][Full Text] [Related]
48. Expression of heat shock proteins HSP70 and HSP90 in endometrial carcinomas. Correlation with clinicopathology, sex steroid receptor status, and p53 protein expression. Nanbu K; Konishi I; Komatsu T; Mandai M; Yamamoto S; Kuroda H; Koshiyama M; Mori T Cancer; 1996 Jan; 77(2):330-8. PubMed ID: 8625242 [TBL] [Abstract][Full Text] [Related]
49. Both the N- and C-terminal chaperone sites of Hsp90 participate in protein refolding. Minami M; Nakamura M; Emori Y; Minami Y Eur J Biochem; 2001 Apr; 268(8):2520-4. PubMed ID: 11298772 [TBL] [Abstract][Full Text] [Related]
50. Interaction of the p53 DNA-binding domain with its n-terminal extension modulates the stability of the p53 tetramer. Natan E; Baloglu C; Pagel K; Freund SM; Morgner N; Robinson CV; Fersht AR; Joerger AC J Mol Biol; 2011 Jun; 409(3):358-68. PubMed ID: 21457718 [TBL] [Abstract][Full Text] [Related]
51. BAG2 drives chemoresistance of breast cancer by exacerbating mutant p53 aggregate. Huang X; Shi D; Zou X; Wu X; Huang S; Kong L; Yang M; Xiao Y; Chen B; Chen X; Ouyang Y; Song L; Jian Y; Lin C Theranostics; 2023; 13(1):339-354. PubMed ID: 36593950 [No Abstract] [Full Text] [Related]
52. Variation in the mechanical unfolding pathway of p53DBD induced by interaction with p53 N-terminal region or DNA. Taniguchi Y; Kawakami M PLoS One; 2012; 7(11):e49003. PubMed ID: 23145047 [TBL] [Abstract][Full Text] [Related]
53. Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain. Kovachev PS; Banerjee D; Rangel LP; Eriksson J; Pedrote MM; Martins-Dinis MMDC; Edwards K; Cordeiro Y; Silva JL; Sanyal S J Biol Chem; 2017 Jun; 292(22):9345-9357. PubMed ID: 28420731 [TBL] [Abstract][Full Text] [Related]
54. Zinc shapes the folding landscape of p53 and establishes a pathway for reactivating structurally diverse cancer mutants. Blanden AR; Yu X; Blayney AJ; Demas C; Ha JH; Liu Y; Withers T; Carpizo DR; Loh SN Elife; 2020 Dec; 9():. PubMed ID: 33263541 [TBL] [Abstract][Full Text] [Related]
55. Investigation of a Direct Interaction between miR4749 and the Tumor Suppressor p53 by Fluorescence, FRET and Molecular Modeling. Bizzarri AR; Cannistraro S Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32098369 [TBL] [Abstract][Full Text] [Related]
56. Disease-related p63 DBD mutations impair DNA binding by distinct mechanisms and varying degree. Osterburg C; Ferniani M; Antonini D; Frombach AS; D'Auria L; Osterburg S; Lotz R; Löhr F; Kehrloesser S; Zhou H; Missero C; Dötsch V Cell Death Dis; 2023 Apr; 14(4):274. PubMed ID: 37072394 [TBL] [Abstract][Full Text] [Related]
57. Dissociation Pathways of the p53 DNA Binding Domain from DNA and Critical Roles of Key Residues Elucidated by dPaCS-MD/MSM. Sobeh MM; Kitao A J Chem Inf Model; 2022 Mar; 62(5):1294-1307. PubMed ID: 35234033 [TBL] [Abstract][Full Text] [Related]
58. The highly interrelated GHRH, p53, and Hsp90 universe. Barabutis N; Siejka A Cell Biol Int; 2020 Aug; 44(8):1558-1563. PubMed ID: 32281696 [TBL] [Abstract][Full Text] [Related]
59. P53 versus inflammation: an update. Kubra KT; Akhter MS; Uddin MA; Barabutis N Cell Cycle; 2020 Jan; 19(2):160-162. PubMed ID: 31880200 [TBL] [Abstract][Full Text] [Related]
60. Mechanism of initiation of aggregation of p53 revealed by Φ-value analysis. Wang G; Fersht AR Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2437-42. PubMed ID: 25675526 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]