These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 31503391)
1. Alteration of insulin signaling to control insect pest by using transformed bacteria expressing dsRNA. Al Baki A; Jung JK; Kim Y Pest Manag Sci; 2020 Mar; 76(3):1020-1030. PubMed ID: 31503391 [TBL] [Abstract][Full Text] [Related]
2. Insulin signaling mediates previtellogenic development and enhances juvenile hormone-mediated vitellogenesis in a lepidopteran insect, Maruca vitrata. Al Baki MA; Lee DW; Jung JK; Kim Y BMC Dev Biol; 2019 Jul; 19(1):14. PubMed ID: 31277577 [TBL] [Abstract][Full Text] [Related]
3. Regulation of hemolymph trehalose titers by insulin signaling in the legume pod borer, Maruca vitrata (Lepidoptera: Crambidae). Al Baki MA; Jung JK; Kim Y Peptides; 2018 Aug; 106():28-36. PubMed ID: 29935203 [TBL] [Abstract][Full Text] [Related]
4. Insulin-like peptides of the legume pod borer, Maruca vitrata, and their mediation effects on hemolymph trehalose level, larval development, and adult reproduction. Al Baki MA; Lee DW; Jung JK; Kim Y Arch Insect Biochem Physiol; 2019 Feb; 100(2):e21524. PubMed ID: 30536703 [TBL] [Abstract][Full Text] [Related]
5. Application of insulin signaling to predict insect growth rate in Maruca vitrata (Lepidoptera: Crambidae). Al Baki MA; Jung JK; Maharjan R; Yi H; Ahn JJ; Gu X; Kim Y PLoS One; 2018; 13(10):e0204935. PubMed ID: 30286156 [TBL] [Abstract][Full Text] [Related]
6. Bacteria-mediated RNAi for managing fall webworm, Hyphantria cunea: screening target genes and analyzing lethal effect. Zhang X; Fan Z; Zhang R; Kong X; Liu F; Fang J; Zhang S; Zhang Z Pest Manag Sci; 2023 Apr; 79(4):1566-1577. PubMed ID: 36527705 [TBL] [Abstract][Full Text] [Related]
7. Efficacy of a cry1Ab Gene for Control of Maruca vitrata (Lepidoptera: Crambidae) in Cowpea (Fabales: Fabaceae). Addae PC; Ishiyaku MF; Tignegre JB; Ba MN; Bationo JB; Atokple IDK; Abudulai M; Dabiré-Binso CL; Traore F; Saba M; Umar ML; Adazebra GA; Onyekachi FN; Nemeth MA; Huesing JE; Beach LR; Higgins TJV; Hellmich RL; Pittendrigh BR J Econ Entomol; 2020 Apr; 113(2):974-979. PubMed ID: 31967641 [TBL] [Abstract][Full Text] [Related]
8. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua. Kim E; Park Y; Kim Y PLoS One; 2015; 10(7):e0132631. PubMed ID: 26171783 [TBL] [Abstract][Full Text] [Related]
9. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua. Vatanparast M; Kim Y PLoS One; 2017; 12(8):e0183054. PubMed ID: 28800614 [TBL] [Abstract][Full Text] [Related]
10. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. Ganbaatar O; Cao B; Zhang Y; Bao D; Bao W; Wuriyanghan H BMC Biotechnol; 2017 Feb; 17(1):9. PubMed ID: 28183289 [TBL] [Abstract][Full Text] [Related]
12. Identification of Semiochemicals from Cowpea, Vigna unguiculata, for Low-input Management of the Legume Pod Borer, Maruca vitrata. Osei-Owusu J; Vuts J; Caulfield JC; Woodcock CM; Withall DM; Hooper AM; Osafo-Acquaah S; Birkett MA J Chem Ecol; 2020 Mar; 46(3):288-298. PubMed ID: 31953705 [TBL] [Abstract][Full Text] [Related]
13. Exogenous administration of dsRNA for the demonstration of RNAi in Chatterjee M; Yadav J; Rathinam M; Mandal A; Chowdhary G; Sreevathsa R; Rao U 3 Biotech; 2021 Apr; 11(4):197. PubMed ID: 33927988 [TBL] [Abstract][Full Text] [Related]
14. Enhancing RNAi by using concatemerized double-stranded RNA. Sharath Chandra G; Asokan R; Manamohan M; Krishna Kumar N Pest Manag Sci; 2019 Feb; 75(2):506-514. PubMed ID: 30039906 [TBL] [Abstract][Full Text] [Related]
15. Silencing of cytochrome P450 CYP6B6 gene of cotton bollworm (Helicoverpa armigera) by RNAi. Zhang X; Liu X; Ma J; Zhao J Bull Entomol Res; 2013 Oct; 103(5):584-91. PubMed ID: 23590813 [TBL] [Abstract][Full Text] [Related]
16. Silencing of multiple target genes via ingestion of dsRNA and PMRi affects development and survival in Helicoverpa armigera. Sharif MN; Iqbal MS; Alam R; Awan MF; Tariq M; Ali Q; Nasir IA Sci Rep; 2022 Jun; 12(1):10405. PubMed ID: 35729318 [TBL] [Abstract][Full Text] [Related]
17. Knockdown of Helicoverpa armigera protease genes affects its growth and mortality via RNA interference. Vatanparast M; Kazzazi M; Sajjadian SM; Park Y Arch Insect Biochem Physiol; 2021 Nov; 108(3):e21840. PubMed ID: 34569086 [TBL] [Abstract][Full Text] [Related]
18. Amenability of Chatterjee M; Yadav J; Rathinam M; Karthik K; Chowdhary G; Sreevathsa R; Rao U Physiol Mol Biol Plants; 2022 Jan; 28(1):189-202. PubMed ID: 35221579 [TBL] [Abstract][Full Text] [Related]
19. Expression of the double-stranded RNA of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae) ribosomal protein P0 gene enhances the resistance of transgenic soybean plants. Meng F; Li Y; Zang Z; Li N; Ran R; Cao Y; Li T; Zhou Q; Li W Pest Manag Sci; 2017 Dec; 73(12):2447-2455. PubMed ID: 28598538 [TBL] [Abstract][Full Text] [Related]
20. Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Ni M; Ma W; Wang X; Gao M; Dai Y; Wei X; Zhang L; Peng Y; Chen S; Ding L; Tian Y; Li J; Wang H; Wang X; Xu G; Guo W; Yang Y; Wu Y; Heuberger S; Tabashnik BE; Zhang T; Zhu Z Plant Biotechnol J; 2017 Sep; 15(9):1204-1213. PubMed ID: 28199783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]