These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 31503604)
1. Fabrication of hierarchical moth-eye structures with durable superhydrophobic property for ultra-broadband visual and mid-infrared applications. Dong L; Zhang Z; Wang L; Weng Z; Ouyang M; Fu Y; Wang J; Li D; Wang Z Appl Opt; 2019 Aug; 58(24):6706-6712. PubMed ID: 31503604 [TBL] [Abstract][Full Text] [Related]
2. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning. Ji S; Park J; Lim H Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661 [TBL] [Abstract][Full Text] [Related]
3. Durable Broadband and Omnidirectional Ultra-antireflective Surfaces. Li Z; Lin J; Liu Z; Feng S; Liu Y; Wang C; Liu Y; Yang S ACS Appl Mater Interfaces; 2018 Nov; 10(46):40180-40188. PubMed ID: 30378430 [TBL] [Abstract][Full Text] [Related]
4. Importance of diffuse scattering phenomena in moth-eye arrays for broadband infrared applications. Gonzalez FL; Morse DE; Gordon MJ Opt Lett; 2014 Jan; 39(1):13-6. PubMed ID: 24365809 [TBL] [Abstract][Full Text] [Related]
5. Nanoimprinting reflow modified moth-eye structures in chalcogenide glass for enhanced broadband antireflection in the mid-infrared. Lotz M; Needham J; Jakobsen MH; Taboryski R Opt Lett; 2019 Sep; 44(17):4383-4386. PubMed ID: 31465408 [TBL] [Abstract][Full Text] [Related]
6. Optimized antireflective silicon nanostructure arrays using nanosphere lithography. Lee D; Bae J; Hong S; Yang H; Kim YB Nanotechnology; 2016 May; 27(21):215302. PubMed ID: 27087196 [TBL] [Abstract][Full Text] [Related]
7. Flexible Self-Cleaning Broadband Antireflective Film Inspired by the Transparent Cicada Wings. Han Z; Wang Z; Li B; Feng X; Jiao Z; Zhang J; Zhao J; Niu S; Ren L ACS Appl Mater Interfaces; 2019 May; 11(18):17019-17027. PubMed ID: 30993966 [TBL] [Abstract][Full Text] [Related]
9. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection. Ji S; Song K; Nguyen TB; Kim N; Lim H ACS Appl Mater Interfaces; 2013 Nov; 5(21):10731-7. PubMed ID: 24116953 [TBL] [Abstract][Full Text] [Related]
10. Cicada-Wing-Inspired Self-Cleaning Antireflection Coatings on Polymer Substrates. Chen YC; Huang ZS; Yang H ACS Appl Mater Interfaces; 2015 Nov; 7(45):25495-505. PubMed ID: 26505645 [TBL] [Abstract][Full Text] [Related]
11. Substrate-Versatile Approach to Robust Antireflective and Superhydrophobic Coatings with Excellent Self-Cleaning Property in Varied Environments. Ren T; He J ACS Appl Mater Interfaces; 2017 Oct; 9(39):34367-34376. PubMed ID: 28929736 [TBL] [Abstract][Full Text] [Related]
12. Flat-top and patterned-topped cone gratings for visible and mid-infrared antireflective properties. Brückner JB; Le Rouzo J; Escoubas L; Berginc G; Gourgon C; Desplats O; Simon JJ Opt Express; 2013 Jul; 21(13):16043-55. PubMed ID: 23842391 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic. Sun J; Wang X; Wu J; Jiang C; Shen J; Cooper MA; Zheng X; Liu Y; Yang Z; Wu D Sci Rep; 2018 Apr; 8(1):5438. PubMed ID: 29615712 [TBL] [Abstract][Full Text] [Related]
14. Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection. Zhang C; Yi P; Peng L; Ni J Appl Opt; 2017 Apr; 56(10):2901-2907. PubMed ID: 28375259 [TBL] [Abstract][Full Text] [Related]
15. Newly Developed Broadband Antireflective Nanostructures by Coating a Low-Index MgF Yoo GY; Nurrosyid N; Lee S; Jeong Y; Yoon I; Kim C; Kim W; Jang SY; Do YR ACS Appl Mater Interfaces; 2020 Mar; 12(9):10626-10636. PubMed ID: 32030970 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of antireflective hierarchical TiO Ryu Y; Kim K Opt Express; 2018 Nov; 26(24):31490-31499. PubMed ID: 30650734 [TBL] [Abstract][Full Text] [Related]
17. Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle. Chuang SY; Chen HL; Shieh J; Lin CH; Cheng CC; Liu HW; Yu CC Nanoscale; 2010 May; 2(5):799-805. PubMed ID: 20648327 [TBL] [Abstract][Full Text] [Related]
18. Evaporation-Induced Hierarchical Assembly of Rigid Silicon Nanopillars Fabricated by a Scalable Two-Level Colloidal Lithography Approach. Gu Z; Kothary P; Sun CH; Gari A; Zhang Y; Taylor C; Jiang P ACS Appl Mater Interfaces; 2019 Oct; 11(43):40461-40469. PubMed ID: 31588737 [TBL] [Abstract][Full Text] [Related]
19. Hierarchical Artificial Compound Eyes with Wide Field-of-View and Antireflection Properties Prepared by Nanotip-Focused Electrohydrodynamic Jet Printing. Su S; Liang J; Li X; Xin W; Ye X; Xiao J; Xu J; Chen L; Yin P ACS Appl Mater Interfaces; 2021 Dec; 13(50):60625-60635. PubMed ID: 34886666 [TBL] [Abstract][Full Text] [Related]
20. Optimizing broadband antireflection with Au micropatterns: a combined FDTD simulation and two-beam LIL approach. Saeed S; Zia A; Liu R; Liu D; Cao L; Wang Z Appl Opt; 2024 Feb; 63(5):1394-1401. PubMed ID: 38437320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]