BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31503621)

  • 1. Demonstration of a cost-effective single-pixel UV camera for flame chemiluminescence imaging.
    Zhang J; Wang Q; Dai J; Cai W
    Appl Opt; 2019 Jul; 58(19):5248-5256. PubMed ID: 31503621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Temperature Measurement of CH4/Air Premix Flat Flame Based on the Absorption Spectroscopy Technology of UV Tunable Laser].
    Yu X; Yang CB; Peng JB; Ma YF; Li XH; Zhang YL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Apr; 36(4):1027-32. PubMed ID: 30051991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid algorithm for three-dimensional flame chemiluminescence tomography based on imaging overexposure compensation.
    Jin Y; Song Y; Qu X; Li Z; Ji Y; He A
    Appl Opt; 2016 Aug; 55(22):5917-23. PubMed ID: 27505371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D flame topography obtained by tomographic chemiluminescence with direct comparison to planar Mie scattering measurements.
    Xu W; Wickersham AJ; Wu Y; He F; Ma L
    Appl Opt; 2015 Mar; 54(9):2174-82. PubMed ID: 25968497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the quantification of spatial resolution for three-dimensional computed tomography of chemiluminescence.
    Yu T; Liu H; Cai W
    Opt Express; 2017 Oct; 25(20):24093-24108. PubMed ID: 29041356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Measurement of OH* and CH* Chemiluminescence in Jet Diffusion Flames.
    Liu Y; Tan J; Wan M; Zhang L; Yao X
    ACS Omega; 2020 Jul; 5(26):15922-15930. PubMed ID: 32656412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed flame chemiluminescence imaging using time-multiplexed structured detection.
    Gragston M; Smith CD; Zhang Z
    Appl Opt; 2018 Apr; 57(11):2923-2929. PubMed ID: 29714296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-pixel camera with one graphene photodetector.
    Li G; Wang W; Wang Y; Yang W; Liu L
    Opt Express; 2016 Jan; 24(1):400-8. PubMed ID: 26832270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-directional 3D flame chemiluminescence tomography based on lens imaging.
    Wang J; Song Y; Li ZH; Kempf A; He AZ
    Opt Lett; 2015 Apr; 40(7):1231-4. PubMed ID: 25831300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of plenoptic imaging for reconstruction of 3D discrete and continuous luminous fields.
    Liu H; Wang Q; Cai W
    J Opt Soc Am A Opt Image Sci Vis; 2019 Feb; 36(2):149-158. PubMed ID: 30874092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flame Imaging Technology Based on 64-Pixel Area Array Sensor.
    Huang X; Hao X; Pan B; Liang X; Wang Z; Feng S; Pei P; Zhang H
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Camera spatial arrangement influence on reconstruction accuracy of chemiluminescence tomography.
    Wang J; Li M; Guo Z; Wu S; Li D
    Appl Opt; 2023 Jul; 62(19):5179-5188. PubMed ID: 37707221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical and experimental validation of a single-camera 3D velocimetry based on endoscopic tomography.
    Zhao J; Liu H; Cai W
    Appl Opt; 2019 Feb; 58(6):1363-1373. PubMed ID: 30874020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution 2D dose measurement device based on a few long scintillating fibers and tomographic reconstruction.
    Goulet M; Archambault L; Beaulieu L; Gingras L
    Med Phys; 2012 Aug; 39(8):4840-9. PubMed ID: 22894410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High spatial resolution computed tomography of chemiluminescence with densely sampled parallel projections.
    Wang J; Guo Z; Nie L; Wu S
    Opt Express; 2019 Jul; 27(15):21050-21068. PubMed ID: 31510189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A light-in-flight single-pixel camera for use in the visible and short-wave infrared.
    Johnson SD; Phillips DB; Ma Z; Ramachandran S; Padgett MJ
    Opt Express; 2019 Apr; 27(7):9829-9837. PubMed ID: 31045141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging.
    Chen Y; Cenker E; Richardson DR; Kearney SP; Halls BR; Skeen SA; Shaddix CR; Guildenbecher DR
    Opt Lett; 2018 Nov; 43(21):5363-5366. PubMed ID: 30383008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperspectral image reconstruction from colored natural flame luminosity imaging in a tri-fuel optical engine.
    Cheng Q; Karimkashi S; Ahmad Z; Kaario O; Vuorinen V; Larmi M
    Sci Rep; 2023 Feb; 13(1):2445. PubMed ID: 36765126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal-to-noise ratio of single-pixel cameras based on photodiodes.
    Jauregui-Sánchez Y; Clemente P; Latorre-Carmona P; Tajahuerce E; Lancis J
    Appl Opt; 2018 Mar; 57(7):B67-B73. PubMed ID: 29521996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A testbed for wide-field, high-resolution, gigapixel-class cameras.
    Kittle DS; Marks DL; Son HS; Kim J; Brady DJ
    Rev Sci Instrum; 2013 May; 84(5):053107. PubMed ID: 23742532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.