BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31503732)

  • 21. An integrated microfluidic chip enabling control and spatially resolved monitoring of temperature in micro flow reactors.
    Hoera C; Ohla S; Shu Z; Beckert E; Nagl S; Belder D
    Anal Bioanal Chem; 2015 Jan; 407(2):387-96. PubMed ID: 25377779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
    Wlodarczyk KL; MacPherson WN; Hand DP; Maroto-Valer MM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D printed microfluidic lab-on-a-chip device for fiber-based dual beam optical manipulation.
    Wang H; Enders A; Preuss JA; Bahnemann J; Heisterkamp A; Torres-Mapa ML
    Sci Rep; 2021 Jul; 11(1):14584. PubMed ID: 34272408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Hot-Polymer Fiber Fabry-Perot Interferometer Anemometer for Sensing Airflow.
    Lee CL; Liu KW; Luo SH; Wu MS; Ma CT
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28869510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrated microfluidic biophotonic chip for laser induced fluorescence detection.
    Chandrasekaran A; Packirisamy M
    Biomed Microdevices; 2010 Oct; 12(5):923-33. PubMed ID: 20563752
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autonomous microfluidics with stimuli-responsive hydrogels.
    Dong L; Jiang H
    Soft Matter; 2007 Sep; 3(10):1223-1230. PubMed ID: 32900089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics.
    Wu CY; Lu JC; Liu MC; Tung YC
    Lab Chip; 2012 Oct; 12(20):3943-51. PubMed ID: 22842773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
    Park J; Jung JH; Park K; Destgeer G; Ahmed H; Ahmad R; Sung HJ
    Lab Chip; 2018 Jan; 18(3):422-432. PubMed ID: 29220055
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel.
    Song Y; Yang J; Pan X; Li D
    Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems.
    Wu CY; Liao WH; Tung YC
    Lab Chip; 2011 May; 11(10):1740-6. PubMed ID: 21451820
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement and control of pressure driven flows in microfluidic devices using an optofluidic flow sensor.
    Cheri MS; Shahraki H; Sadeghi J; Moghaddam MS; Latifi H
    Biomicrofluidics; 2014 Sep; 8(5):054123. PubMed ID: 25584118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of fluorescence generated in microfluidic channel using in-fiber grooves and in-fiber microchannel sensors.
    Irawan R; Tjin SC
    Methods Mol Biol; 2009; 503():403-22. PubMed ID: 19151955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lab-on-fiber technology: a new vision for chemical and biological sensing.
    Ricciardi A; Crescitelli A; Vaiano P; Quero G; Consales M; Pisco M; Esposito E; Cusano A
    Analyst; 2015 Dec; 140(24):8068-79. PubMed ID: 26514109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "Hot-wire" microfluidic flowmeter based on a microfiber coupler.
    Yan SC; Liu ZY; Li C; Ge SJ; Xu F; Lu YQ
    Opt Lett; 2016 Dec; 41(24):5680-5683. PubMed ID: 27973488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical micro/nanofibre embedded soft film enables multifunctional flow sensing in microfluidic chips.
    Zhang Z; Pan J; Tang Y; Xu Y; Zhang L; Gong Y; Tong L
    Lab Chip; 2020 Jul; 20(14):2572-2579. PubMed ID: 32573608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microfluidic device based on an evaporation-driven micropump.
    Nie C; Frijns AJ; Mandamparambil R; den Toonder JM
    Biomed Microdevices; 2015 Apr; 17(2):47. PubMed ID: 25804609
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser-induced thermal bubbles for microfluidic applications.
    Zhang K; Jian A; Zhang X; Wang Y; Li Z; Tam HY
    Lab Chip; 2011 Apr; 11(7):1389-95. PubMed ID: 21331412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling and Analysis of an Opto-Fluidic Sensor for Lab-on-a-Chip Applications.
    Muniswamy V; Bangalore Muniraju C; Kumar Pattnaik P; Krishnaswamy N
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.