These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31503732)

  • 41. Integrated microfluidic flowmeter based on a micro-FBG inscribed in Co²⁺-doped optical fiber.
    Liu Z; Tse ML; Zhang AP; Tam HY
    Opt Lett; 2014 Oct; 39(20):5877-80. PubMed ID: 25361108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Speed Generation of Microbubbles with Constant Cumulative Production in a Glass Capillary Microfluidic Bubble Generator.
    Yu J; Cheng W; Ni J; Li C; Su X; Yan H; Bao F; Hou L
    Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930722
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement.
    Francis J; Stamper I; Heikenfeld J; Gomez EF
    Lab Chip; 2018 Dec; 19(1):178-185. PubMed ID: 30525141
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics.
    Ryzhkov VV; Echeistov VV; Zverev AV; Baklykov DA; Konstantinova T; Lotkov ES; Ryazantcev PG; Sh Alibekov R; Kuguk AK; Aleksandrov AR; Krasko ES; Barbasheva AA; Ryzhikov IA; Rodionov IA
    Lab Chip; 2023 Jun; 23(12):2789-2797. PubMed ID: 37198997
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
    Fu Q; Liu J
    J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bubble-free and pulse-free fluid delivery into microfluidic devices.
    Kang YJ; Yeom E; Seo E; Lee SJ
    Biomicrofluidics; 2014 Jan; 8(1):014102. PubMed ID: 24753723
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Facile Single-Phase-Fluid-Driven Bubble Microfluidic Generator for Potential Detection of Viruses Suspended in Air.
    Man J; Man L; Zhou C; Li J; Liang S; Zhang S; Li J
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624594
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optofluidic membrane interferometer: An imaging method for measuring microfluidic pressure and flow rate simultaneously on a chip.
    Song W; Psaltis D
    Biomicrofluidics; 2011 Dec; 5(4):44110-4411011. PubMed ID: 22662062
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamic Flow Control over Optical Properties of Liquid Crystal-Quantum Dot Hybrids in Microfluidic Devices.
    Bezrukov A; Galyametdinov Y
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241613
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere.
    Brans T; Strubbe F; Schreuer C; Vandewiele S; Neyts K; Beunis F
    Electrophoresis; 2015 Sep; 36(17):2102-9. PubMed ID: 25963750
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber.
    Tian J; Lu Z; Quan M; Jiao Y; Yao Y
    Opt Express; 2016 Sep; 24(18):20132-42. PubMed ID: 27607621
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Continuous detection of micro-particles by fiber Bragg grating Fabry-Pérot flow cytometer.
    Jiang B; Dai H; Zou Y; Chen X
    Opt Express; 2018 May; 26(10):12579-12584. PubMed ID: 29801296
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical fiber temperature sensor based on a microcavity with polymer overlay.
    Hernández-Romano I; Cruz-Garcia MA; Moreno-Hernández C; Monzón-Hernández D; López-Figueroa EO; Paredes-Gallardo OE; Torres-Cisneros M; Villatoro J
    Opt Express; 2016 Mar; 24(5):5654-5661. PubMed ID: 29092386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.
    Lin H; Chen J; Chen C
    Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In situ integration of graphene foam-titanium nitride based bio-scaffolds and microfluidic structures for soil nutrient sensors.
    Ali MA; Mondal K; Wang Y; Jiang H; Mahal NK; Castellano MJ; Sharma A; Dong L
    Lab Chip; 2017 Jan; 17(2):274-285. PubMed ID: 28009868
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bubble pump: scalable strategy for in-plane liquid routing.
    Oskooei A; Günther A
    Lab Chip; 2015 Jul; 15(13):2842-53. PubMed ID: 26016773
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optofluidic router based on tunable liquid-liquid mirrors.
    Müller P; Kopp D; Llobera A; Zappe H
    Lab Chip; 2014 Feb; 14(4):737-43. PubMed ID: 24287814
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative study for control of air-liquid segmented flow in a 3D-printed chip using a vacuum-driven system.
    Hong H; Song JM; Yeom E
    Sci Rep; 2022 May; 12(1):8986. PubMed ID: 35643726
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integration of Curved D-Type Optical Fiber Sensor with Microfluidic Chip.
    Sun YS; Li CJ; Hsu JC
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28042821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.