These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31503744)

  • 1. Chip-based frequency comb sources for optical coherence tomography.
    Ji X; Yao X; Klenner A; Gan Y; Gaeta AL; Hendon CP; Lipson M
    Opt Express; 2019 Jul; 27(14):19896-19905. PubMed ID: 31503744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soliton microcomb based spectral domain optical coherence tomography.
    Marchand PJ; Riemensberger J; Skehan JC; Ho JJ; Pfeiffer MHP; Liu J; Hauger C; Lasser T; Kippenberg TJ
    Nat Commun; 2021 Jan; 12(1):427. PubMed ID: 33462200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Video-rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators.
    Kang J; Feng P; Li B; Zhang C; Wei X; Lam EY; Tsia KK; Wong KKY
    Opt Express; 2018 Sep; 26(19):24928-24939. PubMed ID: 30469601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon-chip mid-infrared frequency comb generation.
    Griffith AG; Lau RK; Cardenas J; Okawachi Y; Mohanty A; Fain R; Lee YH; Yu M; Phare CT; Poitras CB; Gaeta AL; Lipson M
    Nat Commun; 2015 Feb; 6():6299. PubMed ID: 25708922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A broadband chip-scale optical frequency synthesizer at 2.7 × 10(-16) relative uncertainty.
    Huang SW; Yang J; Yu M; McGuyer BH; Kwong DL; Zelevinsky T; Wong CW
    Sci Adv; 2016 Apr; 2(4):e1501489. PubMed ID: 27152341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral Interferometry with Frequency Combs.
    Twayana K; Rebolledo-Salgado I; Deriushkina E; Schröder J; Karlsson M; Torres-Company V
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Millimeter-scale chip-based supercontinuum generation for optical coherence tomography.
    Ji X; Mojahed D; Okawachi Y; Gaeta AL; Hendon CP; Lipson M
    Sci Adv; 2021 Sep; 7(38):eabg8869. PubMed ID: 34533990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agile THz-range spectral multiplication of frequency combs using a multi-wavelength laser.
    Abdollahi S; Ladouce M; Marin-Palomo P; Virte M
    Nat Commun; 2024 Feb; 15(1):1305. PubMed ID: 38346979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic chip-based soliton frequency combs covering the biological imaging window.
    Karpov M; Pfeiffer MHP; Liu J; Lukashchuk A; Kippenberg TJ
    Nat Commun; 2018 Mar; 9(1):1146. PubMed ID: 29559634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Battery-operated integrated frequency comb generator.
    Stern B; Ji X; Okawachi Y; Gaeta AL; Lipson M
    Nature; 2018 Oct; 562(7727):401-405. PubMed ID: 30297798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip dual-comb source for spectroscopy.
    Dutt A; Joshi C; Ji X; Cardenas J; Okawachi Y; Luke K; Gaeta AL; Lipson M
    Sci Adv; 2018 Mar; 4(3):e1701858. PubMed ID: 29511733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators.
    Fülöp A; Mazur M; Lorences-Riesgo A; Helgason ÓB; Wang PH; Xuan Y; Leaird DE; Qi M; Andrekson PA; Weiner AM; Torres-Company V
    Nat Commun; 2018 Apr; 9(1):1598. PubMed ID: 29686226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz.
    Huang SW; Yang J; Lim J; Zhou H; Yu M; Kwong DL; Wong CW
    Sci Rep; 2015 Aug; 5():13355. PubMed ID: 26311406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators.
    Wang CY; Herr T; Del'Haye P; Schliesser A; Hofer J; Holzwarth R; Hänsch TW; Picqué N; Kippenberg TJ
    Nat Commun; 2013; 4():1345. PubMed ID: 23299895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible-to-mid-IR tunable frequency comb in nanophotonics.
    Roy A; Ledezma L; Costa L; Gray R; Sekine R; Guo Q; Liu M; Briggs RM; Marandi A
    Nat Commun; 2023 Oct; 14(1):6549. PubMed ID: 37848411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs.
    Wang PH; Ferdous F; Miao H; Wang J; Leaird DE; Srinivasan K; Chen L; Aksyuk V; Weiner AM
    Opt Express; 2012 Dec; 20(28):29284-95. PubMed ID: 23388754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb.
    Geng Y; Huang X; Cui W; Ling Y; Xu B; Zhang J; Yi X; Wu B; Huang SW; Qiu K; Wong CW; Zhou H
    Opt Lett; 2018 May; 43(10):2406-2409. PubMed ID: 29762604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mid-infrared frequency combs and staggered spectral patterns in χ
    Amiune N; Fan Z; Pankratov VV; Puzyrev DN; Skryabin DV; Zawilski KT; Schunemann PG; Breunig I
    Opt Express; 2023 Jan; 31(2):907-915. PubMed ID: 36785139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-dense optical data transmission over standard fibre with a single chip source.
    Corcoran B; Tan M; Xu X; Boes A; Wu J; Nguyen TG; Chu ST; Little BE; Morandotti R; Mitchell A; Moss DJ
    Nat Commun; 2020 May; 11(1):2568. PubMed ID: 32444605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipative Kerr solitons in optical microresonators.
    Kippenberg TJ; Gaeta AL; Lipson M; Gorodetsky ML
    Science; 2018 Aug; 361(6402):. PubMed ID: 30093576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.