These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31503771)

  • 1. High bandwidth and responsivity mid-infrared graphene photodetector based on a modified metal-dielectric-graphene architecture.
    Jafari B; Soofi H
    Appl Opt; 2019 Aug; 58(23):6280-6287. PubMed ID: 31503771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared Black Phosphorus Phototransistor with Tunable Responsivity and Low Noise Equivalent Power.
    Huang L; Tan WC; Wang L; Dong B; Lee C; Ang KW
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36130-36136. PubMed ID: 28959887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.
    Vabbina P; Choudhary N; Chowdhury AA; Sinha R; Karabiyik M; Das S; Choi W; Pala N
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15206-13. PubMed ID: 26148017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal design of graphene-based plasmonic enhanced photodetector using PSO.
    Molaei-Yeznabad A; Abedi K
    Sci Rep; 2024 Jul; 14(1):15291. PubMed ID: 38961178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilayer graphene/HgCdTe based very long infrared photodetector with superior external quantum efficiency, responsivity, and detectivity.
    Bansal S; Sharma K; Jain P; Sardana N; Kumar S; Gupta N; Singh AK
    RSC Adv; 2018 Nov; 8(69):39579-39592. PubMed ID: 35558011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct detection of photon spin angular momentum by a chiral graphene mid-infrared photodetector.
    Peng J; Cumming BP; Gu M
    Opt Lett; 2019 Jun; 44(12):2998-3001. PubMed ID: 31199365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of tuning graphene plasmonic behaviors by ferroelectric domains for self-driven infrared photodetector applications.
    Guo J; Liu Y; Lin Y; Tian Y; Zhang J; Gong T; Cheng T; Huang W; Zhang X
    Nanoscale; 2019 Nov; 11(43):20868-20875. PubMed ID: 31657407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm.
    Guo J; Li J; Liu C; Yin Y; Wang W; Ni Z; Fu Z; Yu H; Xu Y; Shi Y; Ma Y; Gao S; Tong L; Dai D
    Light Sci Appl; 2020; 9():29. PubMed ID: 32140220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Model of a Plasmonically Enhanced Tunable Spectrally Selective Infrared Photodetector Based on Intercalation-Doped Nanopatterned Multilayer Graphene.
    Shabbir MW; Leuenberger MN
    ACS Nano; 2022 Apr; 16(4):5529-5536. PubMed ID: 35316039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity.
    Lu Y; Wu Z; Xu W; Lin S
    Nanotechnology; 2016 Dec; 27(48):48LT03. PubMed ID: 27805911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Detectivity Graphene-Silicon Heterojunction Photodetector.
    Li X; Zhu M; Du M; Lv Z; Zhang L; Li Y; Yang Y; Yang T; Li X; Wang K; Zhu H; Fang Y
    Small; 2016 Feb; 12(5):595-601. PubMed ID: 26643577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared Photodetector Based on the Photothermionic Effect of Graphene-Nanowall/Silicon Heterojunction.
    Liu X; Zhou Q; Luo S; Du H; Cao Z; Peng X; Feng W; Shen J; Wei D
    ACS Appl Mater Interfaces; 2019 May; 11(19):17663-17669. PubMed ID: 31007009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Sensitive, Fast Graphene Photodetector with Responsivity >10
    Murali K; Abraham N; Das S; Kallatt S; Majumdar K
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30010-30018. PubMed ID: 31347352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High responsivity graphene-InGaAs near-infrared photodetector realized by hole trapping and its response saturation mechanism.
    Hu L; Dong Y; Deng J; Xie Y; Ma X; Qian F; Wang Q; Fu P; Xu C
    Opt Express; 2021 Jul; 29(15):23234-23243. PubMed ID: 34614591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance enhancement of an ultrafast graphene photodetector via simultaneous two-mode absorption in a hybrid plasmonic waveguide.
    Okda HA; Rabia SI; Shalaby HMH
    Appl Opt; 2022 Apr; 61(11):3165-3173. PubMed ID: 35471294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO₂ microwire.
    Wu JM; Chang WE
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14286-92. PubMed ID: 25027392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric engineered graphene transistors for high-performance near-infrared photodetection.
    Zhou W; Ma T; Tian Y; Jiang Y; Yu X
    iScience; 2024 Mar; 27(3):109314. PubMed ID: 38450152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon-graphene conductive photodetector with ultra-high responsivity.
    Liu J; Yin Y; Yu L; Shi Y; Liang D; Dai D
    Sci Rep; 2017 Jan; 7():40904. PubMed ID: 28106084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responsivity enhancement of a PtSi photodetector with graphene by the photogating effect.
    Mehrfar AH; Majd AE
    Appl Opt; 2023 Feb; 62(5):1160-1166. PubMed ID: 36821213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Broadband Photodetector Based on PbS Quantum Dots and Graphene with High Responsivity and Detectivity.
    Luo M; Chen R; Zhu Z; Cheng C; Ning X; Huang B
    Nanomaterials (Basel); 2023 Jul; 13(13):. PubMed ID: 37446512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.