These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Efficient and low-noise single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides. Kamada H; Asobe M; Honjo T; Takesue H; Tokura Y; Nishida Y; Tadanaga O; Miyazawa H Opt Lett; 2008 Apr; 33(7):639-41. PubMed ID: 18382502 [TBL] [Abstract][Full Text] [Related]
3. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Langrock C; Diamanti E; Roussev RV; Yamamoto Y; Fejer MM; Takesue H Opt Lett; 2005 Jul; 30(13):1725-7. PubMed ID: 16075551 [TBL] [Abstract][Full Text] [Related]
4. Optimizing up-conversion single-photon detectors for quantum key distribution. Yao N; Yao Q; Xie XP; Liu Y; Xu P; Fang W; Zheng MY; Fan J; Zhang Q; Tong L; Pan JW Opt Express; 2020 Aug; 28(17):25123-25133. PubMed ID: 32907041 [TBL] [Abstract][Full Text] [Related]
5. Enhancing the detectivity of an upconversion single-photon detector by spatial filtering of upconverted parametric fluorescence. Meng L; Høgstedt L; Tidemand-Lichtenberg P; Pedersen C; Rodrigo PJ Opt Express; 2018 Sep; 26(19):24712-24722. PubMed ID: 30469584 [TBL] [Abstract][Full Text] [Related]
6. Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Pelc JS; Ma L; Phillips CR; Zhang Q; Langrock C; Slattery O; Tang X; Fejer MM Opt Express; 2011 Oct; 19(22):21445-56. PubMed ID: 22108994 [TBL] [Abstract][Full Text] [Related]
7. Integrated optical source of polarization entangled photons at 1310 nm. Martin A; Cristofori V; Aboussouan P; Herrmann H; Sohler W; Ostrowsky DB; Alibart O; Tanzilli S Opt Express; 2009 Jan; 17(2):1033-41. PubMed ID: 19158921 [TBL] [Abstract][Full Text] [Related]
8. Dual-channel, single-photon upconversion detector at 1.3 μm. Pelc JS; Kuo PS; Slattery O; Ma L; Tang X; Fejer MM Opt Express; 2012 Aug; 20(17):19075-87. PubMed ID: 23038548 [TBL] [Abstract][Full Text] [Related]
9. Two-way single-photon-level frequency conversion between 852 nm and 1560 nm for connecting cesium D2 line with the telecom C-band. Zhang K; He J; Wang J Opt Express; 2020 Sep; 28(19):27785-27796. PubMed ID: 32988064 [TBL] [Abstract][Full Text] [Related]
10. Multiplexed quantum frequency conversion. Tang C; Ma Z; Li Z; Sua Y; Huang YP Opt Lett; 2024 Oct; 49(20):5735-5738. PubMed ID: 39404525 [TBL] [Abstract][Full Text] [Related]
11. Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths. Roussev RV; Langrock C; Kurz JR; Fejer MM Opt Lett; 2004 Jul; 29(13):1518-20. PubMed ID: 15259732 [TBL] [Abstract][Full Text] [Related]
12. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band. Zaske S; Lenhard A; Becher C Opt Express; 2011 Jun; 19(13):12825-36. PubMed ID: 21716525 [TBL] [Abstract][Full Text] [Related]
13. Frequency down-conversion of 637 nm light to the telecommunication band for non-classical light emitted from NV centers in diamond. Ikuta R; Kobayashi T; Yasui S; Miki S; Yamashita T; Terai H; Fujiwara M; Yamamoto T; Koashi M; Sasaki M; Wang Z; Imoto N Opt Express; 2014 May; 22(9):11205-14. PubMed ID: 24921818 [TBL] [Abstract][Full Text] [Related]
14. Spectral noise in frequency conversion from the visible to the telecommunication C-band. Strassmann PC; Martin A; Gisin N; Afzelius M Opt Express; 2019 May; 27(10):14298-14307. PubMed ID: 31163880 [TBL] [Abstract][Full Text] [Related]
15. Cascaded downconversion interface to convert single-photon-level signals at 650 nm to the telecom band. Esfandyarpour V; Langrock C; Fejer M Opt Lett; 2018 Nov; 43(22):5655-5658. PubMed ID: 30439918 [TBL] [Abstract][Full Text] [Related]