These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31503927)

  • 1. Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading.
    Ahmad F; Anderson TH; Monk PB; Lakhtakia A
    Appl Opt; 2019 Aug; 58(22):6067-6078. PubMed ID: 31503927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading. Part II: finite-difference algorithm and double-layer antireflection coatings.
    Ahmad F; Civiletti BJ; Monk PB; Lakhtakia A
    Appl Opt; 2022 Nov; 61(33):10049-10061. PubMed ID: 36606838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading. Part III: piecewise-homogeneous grading.
    Ahmad F; Monk PB; Lakhtakia A
    Appl Opt; 2024 Apr; 63(11):2831-2836. PubMed ID: 38856378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optoelectronic optimization of graded-bandgap thin-film AlGaAs solar cells.
    Ahmad F; Lakhtakia A; Monk PB
    Appl Opt; 2020 Feb; 59(4):1018-1027. PubMed ID: 32225246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optoelectronic optimization of graded-bandgap thin-film AlGaAs solar cells. Part II: optimal antireflection front-surface texturing.
    Ahmad F; Monk PB; Lakhtakia A
    Appl Opt; 2023 Oct; 62(28):7487-7495. PubMed ID: 37855518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced efficiency of graded-bandgap thin-film solar cells due to concentrated sunlight.
    Ahmad F; Lakhtakia A; Monk PB
    Appl Opt; 2021 Dec; 60(34):10570-10578. PubMed ID: 35200916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-graded CIGS with narrow bandgap for tandem solar cells.
    Feurer T; Bissig B; Weiss TP; Carron R; Avancini E; Löckinger J; Buecheler S; Tiwari AN
    Sci Technol Adv Mater; 2018; 19(1):263-270. PubMed ID: 29707066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-Selective TiO2 Contact for Cu(In,Ga)Se2 Solar Cells.
    Hsu W; Sutter-Fella CM; Hettick M; Cheng L; Chan S; Chen Y; Zeng Y; Zheng M; Wang HP; Chiang CC; Javey A
    Sci Rep; 2015 Nov; 5():16028. PubMed ID: 26526426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composition-Dependent Passivation Efficiency at the CdS/CuIn
    Ballabio M; Fuertes Marrón D; Barreau N; Bonn M; Cánovas E
    Adv Mater; 2020 Mar; 32(9):e1907763. PubMed ID: 31984586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic Layer Deposition of Ultrathin ZnO Films for Hybrid Window Layers for Cu(In
    Lee J; Jeon DH; Hwang DK; Yang KJ; Kang JK; Sung SJ; Park H; Kim DH
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading: erratum.
    Ahmad F; Anderson TH; Monk PB; Lakhtakia A
    Appl Opt; 2020 Mar; 59(8):2615. PubMed ID: 32225813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkali Metal Pretreatment for Precise Na Doping and
    Shao X; Shi S; Liang B; Chen L; Qi T; Yuan X; Yu S; Tang W; Yang C; Li W
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30147-30156. PubMed ID: 38822780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological-Electrical Property Relation in Cu(In,Ga)(S,Se)
    Kim JH; Kim MK; Gadisa A; Stuard SJ; Nahid MM; Kwon S; Bae S; Kim B; Park GS; Won DH; Lee DK; Kim DW; Shin TJ; Do YR; Kim J; Choi WJ; Ade H; Min BK
    Small; 2020 Dec; 16(48):e2003865. PubMed ID: 33150725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of quantum dots as a buffer layer in CIGS solar cells: a comparative study.
    Abdulghani ZR; Najm AS; Holi AM; Al-Zahrani AA; Al-Zahrani KS; Moria H
    Sci Rep; 2022 May; 12(1):8099. PubMed ID: 35577846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BTO-Coupled CIGS Solar Cells with High Performances.
    Li C; Luo H; Gu H; Li H
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defect Analysis of Solution-Based Process CIGS Thin-Film Solar Cells Using Technology Computer-Aided Design.
    Lee S; Lee J; Lee Y; Park GS; Kim MK; Min BK; Shin M
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6601-6608. PubMed ID: 31026998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrawide Spectral Response of CIGS Solar Cells Integrated with Luminescent Down-Shifting Quantum Dots.
    Jeong HJ; Kim YC; Lee SK; Jeong Y; Song JW; Yun JH; Jang JH
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25404-25411. PubMed ID: 28695727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process.
    Singh M; Jiu J; Sugahara T; Suganuma K
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16297-303. PubMed ID: 25180569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal CdS Buffer Thickness to Form High-Quality CdS/Cu(In,Ga)Se
    Cho KS; Jang J; Park JH; Lee DK; Song S; Kim K; Eo YJ; Yun JH; Gwak J; Chung CH
    ACS Omega; 2020 Sep; 5(37):23983-23988. PubMed ID: 32984719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Si-Doping Effects in Cu(In,Ga)Se
    Ishizuka S; Koida T; Taguchi N; Tanaka S; Fons P; Shibata H
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31119-31128. PubMed ID: 28829112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.