These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31503972)

  • 1. Example of metal-multi-dielectric-metal cooling metamaterial use in engineering thermal radiation.
    Wang D; Zhu Y; Fang C; He P; Ye Y
    Appl Opt; 2019 Sep; 58(26):7035-7041. PubMed ID: 31503972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling.
    Zhai Y; Ma Y; David SN; Zhao D; Lou R; Tan G; Yang R; Yin X
    Science; 2017 Mar; 355(6329):1062-1066. PubMed ID: 28183998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.
    Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R
    Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-free design of a multilayered metamaterial with chirped Bragg grating for enhanced radiative cooling.
    Osuna Ruiz D; Lezaun C; Torres-García AE; Beruete M
    Opt Express; 2023 Jul; 31(14):22698-22709. PubMed ID: 37475374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive radiative cooling below ambient air temperature under direct sunlight.
    Raman AP; Anoma MA; Zhu L; Rephaeli E; Fan S
    Nature; 2014 Nov; 515(7528):540-4. PubMed ID: 25428501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyramid Textured Photonic Films with High-Refractive Index Fillers for Efficient Radiative Cooling.
    Fu Y; Chen L; Guo Y; Shi Y; Liu Y; Zeng Y; Lin Y; Luo D
    Adv Sci (Weinh); 2024 Oct; 11(39):e2404900. PubMed ID: 39159127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-Linked Porous Polymeric Coating without a Metal-Reflective Layer for Sub-Ambient Radiative Cooling.
    Son S; Liu Y; Chae D; Lee H
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57832-57839. PubMed ID: 33345542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Janus Textile Capable of Radiative Subambient Cooling and Warming for Multi-Scenario Personal Thermal Management.
    Li K; Li M; Lin C; Liu G; Li Y; Huang B
    Small; 2023 May; 19(19):e2206149. PubMed ID: 36807770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multilayer Emitter Close to Ideal Solar Reflectance for Efficient Daytime Radiative Cooling.
    Zhu Y; Wang D; Fang C; He P; Ye YH
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31323830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling.
    Zhang J; Zhou Z; Tang H; Xing J; Quan J; Liu J; Yu J; Hu M
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14132-14140. PubMed ID: 33724770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capped MIM metamaterial for ultra-broadband perfect absorbing and its application in radiative cooling.
    Wei B; Zhu H; Wu Q; Cai G; Liu Q
    Appl Opt; 2023 Jul; 62(21):5660-5665. PubMed ID: 37707182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel.
    Leroy A; Bhatia B; Kelsall CC; Castillejo-Cuberos A; Di Capua H M; Zhao L; Zhang L; Guzman AM; Wang EN
    Sci Adv; 2019 Oct; 5(10):eaat9480. PubMed ID: 31692957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchically Hollow Microfibers as a Scalable and Effective Thermal Insulating Cooler for Buildings.
    Zhong H; Li Y; Zhang P; Gao S; Liu B; Wang Y; Meng T; Zhou Y; Hou H; Xue C; Zhao Y; Wang Z
    ACS Nano; 2021 Jun; 15(6):10076-10083. PubMed ID: 34014070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Self-Assembled 2D Thermofunctional Material for Radiative Cooling.
    Jaramillo-Fernandez J; Whitworth GL; Pariente JA; Blanco A; Garcia PD; Lopez C; Sotomayor-Torres CM
    Small; 2019 Dec; 15(52):e1905290. PubMed ID: 31650687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling.
    Chae D; Kim M; Jung PH; Son S; Seo J; Liu Y; Lee BJ; Lee H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8073-8081. PubMed ID: 31990166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh Passive Cooling Power in Hydrogel with Rationally Designed Optofluidic Properties.
    Fei J; Han D; Zhang X; Li K; Lavielle N; Zhou K; Wang X; Tan JY; Zhong J; Wan MP; Nefzaoui E; Bourouina T; Li S; Ng BF; Cai L; Li H
    Nano Lett; 2024 Jan; 24(2):623-631. PubMed ID: 38048272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiative cooling and indoor light management enabled by a transparent and self-cleaning polymer-based metamaterial.
    Huang G; Yengannagari AR; Matsumori K; Patel P; Datla A; Trindade K; Amarsanaa E; Zhao T; Köhler U; Busko D; Richards BS
    Nat Commun; 2024 May; 15(1):3798. PubMed ID: 38714689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling.
    Chae D; Lim H; So S; Son S; Ju S; Kim W; Rho J; Lee H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21119-21126. PubMed ID: 33926186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling.
    Rephaeli E; Raman A; Fan S
    Nano Lett; 2013 Apr; 13(4):1457-61. PubMed ID: 23461597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.