These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 31504032)

  • 1. From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline.
    Foster CJ; Gopalakrishnan S; Antoniewicz MR; Maranas CD
    PLoS Comput Biol; 2019 Sep; 15(9):e1007319. PubMed ID: 31504032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K-FIT: An accelerated kinetic parameterization algorithm using steady-state fluxomic data.
    Gopalakrishnan S; Dash S; Maranas C
    Metab Eng; 2020 Sep; 61():197-205. PubMed ID: 32173504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using (13)C metabolic flux analysis.
    Usui Y; Hirasawa T; Furusawa C; Shirai T; Yamamoto N; Mori H; Shimizu H
    Microb Cell Fact; 2012 Jun; 11():87. PubMed ID: 22721472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p13CMFA: Parsimonious 13C metabolic flux analysis.
    Foguet C; Jayaraman A; Marin S; Selivanov VA; Moreno P; Messeguer R; de Atauri P; Cascante M
    PLoS Comput Biol; 2019 Sep; 15(9):e1007310. PubMed ID: 31490922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments.
    Li M; Ho PY; Yao S; Shimizu K
    J Biotechnol; 2006 Mar; 122(2):254-66. PubMed ID: 16310273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains.
    Khodayari A; Maranas CD
    Nat Commun; 2016 Dec; 7():13806. PubMed ID: 27996047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pool size measurements improve precision of flux estimates but increase sensitivity to unmodeled reactions outside the core network in isotopically nonstationary metabolic flux analysis (INST-MFA).
    Zheng AO; Sher A; Fridman D; Musante CJ; Young JD
    Biotechnol J; 2022 Mar; 17(3):e2000427. PubMed ID: 35085426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 13C metabolic flux analysis at a genome-scale.
    Gopalakrishnan S; Maranas CD
    Metab Eng; 2015 Nov; 32():12-22. PubMed ID: 26358840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BayFlux: A Bayesian method to quantify metabolic Fluxes and their uncertainty at the genome scale.
    Backman TWH; Schenk C; Radivojevic T; Ando D; Singh J; Czajka JJ; Costello Z; Keasling JD; Tang Y; Akhmatskaya E; Garcia Martin H
    PLoS Comput Biol; 2023 Nov; 19(11):e1011111. PubMed ID: 37948450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data.
    Schaub J; Mauch K; Reuss M
    Biotechnol Bioeng; 2008 Apr; 99(5):1170-85. PubMed ID: 17972325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments.
    Nöh K; Grönke K; Luo B; Takors R; Oldiges M; Wiechert W
    J Biotechnol; 2007 Apr; 129(2):249-67. PubMed ID: 17207877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with
    Okahashi N; Matsuda F; Yoshikawa K; Shirai T; Matsumoto Y; Wada M; Shimizu H
    Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Method to Constrain Genome-Scale Models with 13C Labeling Data.
    Martín HG; Kumar VS; Weaver D; Ghosh A; Chubukov V; Mukhopadhyay A; Arkin A; Keasling JD
    PLoS Comput Biol; 2015 Sep; 11(9):e1004363. PubMed ID: 26379153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel labeling experiments with [U-13C]glucose validate E. coli metabolic network model for 13C metabolic flux analysis.
    Leighty RW; Antoniewicz MR
    Metab Eng; 2012 Sep; 14(5):533-41. PubMed ID: 22771935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming.
    Wu SG; Wang Y; Jiang W; Oyetunde T; Yao R; Zhang X; Shimizu K; Tang YJ; Bao FS
    PLoS Comput Biol; 2016 Apr; 12(4):e1004838. PubMed ID: 27092947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli.
    Crown SB; Long CP; Antoniewicz MR
    Metab Eng; 2015 Mar; 28():151-158. PubMed ID: 25596508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models.
    Pandey V; Hadadi N; Hatzimanikatis V
    PLoS Comput Biol; 2019 May; 15(5):e1007036. PubMed ID: 31083653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of two Saccharomyces cerevisiae strains with kinetic models at genome-scale.
    Hu M; Dinh HV; Shen Y; Suthers PF; Foster CJ; Call CM; Ye X; Pratas J; Fatma Z; Zhao H; Rabinowitz JD; Maranas CD
    Metab Eng; 2023 Mar; 76():1-17. PubMed ID: 36603705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.