BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 3150407)

  • 1. Effect of venous (gut) CO2 loading on intrapulmonary gas fractions and ventilation in the tegu lizard.
    Ballam GO; Donaldson LA
    J Comp Physiol B; 1988; 158(5):591-600. PubMed ID: 3150407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breathing response of the tegu lizard to 1-4% CO2 in the mouth and nose or inspired into the lungs.
    Ballam GO
    Respir Physiol; 1985 Dec; 62(3):375-86. PubMed ID: 3937193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A decrease in nasal CO2 stimulates breathing in the tegu lizard.
    Coates EL; Furilla RA; Ballam GO; Bartlett D
    Respir Physiol; 1991 Oct; 86(1):65-75. PubMed ID: 1759054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Halothane effects on ventilatory responses to changes in intrapulmonary CO2 in geese.
    Pizarro J; Ludders JW; Douse MA; Mitchell GS
    Respir Physiol; 1990 Dec; 82(3):337-47. PubMed ID: 2127857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upper airway CO2 receptors in tegu lizards: localization and ventilatory sensitivity.
    Coates EL; Ballam GO
    J Comp Physiol B; 1987; 157(4):483-9. PubMed ID: 2822784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrapulmonary Co2 receptors and ventilatory response to lung Co2 loading.
    Tallman RD; Grodins FS
    J Appl Physiol Respir Environ Exerc Physiol; 1982 May; 52(5):1272-7. PubMed ID: 6807945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of upper airway CO2 pattern on ventilatory frequency in tegu lizards.
    Ballam GO; Coates EL
    Am J Physiol; 1989 Jul; 257(1 Pt 2):R156-61. PubMed ID: 2546453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The matching of ventilation and perfusion in the lung of the Tegu lizard, Tupinambis nigropunctatus.
    Hlastala MP; Standaert TA; Pierson DJ; Luchtel DL
    Respir Physiol; 1985 Jun; 60(3):277-94. PubMed ID: 4035106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventilatory response to inspired CO2 in the lizard, Tupinambis nigropunctatus.
    Ballam GO
    Comp Biochem Physiol A Comp Physiol; 1984; 78(4):757-62. PubMed ID: 6149049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulmonary NO synthase inhibition and inspired CO2: effects on V'/Q' and pulmonary blood flow distribution.
    Brogan TV; Hedges RG; McKinney S; Robertson HT; Hlastala MP; Swenson ER
    Eur Respir J; 2000 Aug; 16(2):288-95. PubMed ID: 10968505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An appropriate inspiratory flow pattern can enhance CO2 exchange, facilitating protective ventilation of healthy lungs.
    Sturesson LW; Malmkvist G; Allvin S; Collryd M; Bodelsson M; Jonson B
    Br J Anaesth; 2016 Aug; 117(2):243-9. PubMed ID: 27440637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon dioxide added late in inspiration reduces ventilation-perfusion heterogeneity without causing respiratory acidosis.
    Brogan TV; Robertson HT; Lamm WJ; Souders JE; Swenson ER
    J Appl Physiol (1985); 2004 May; 96(5):1894-8. PubMed ID: 14660515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygraphy in spontaneously breathing subjects.
    Larsen VH; Waldau T; Oberg B
    Acta Anaesthesiol Scand Suppl; 1995; 107():81-5. PubMed ID: 8599305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrapulmonary receptors in the Tegu lizard: I. Sensitivity to CO2.
    Feede MR; Kuhlmann WD; Scheid P
    Respir Physiol; 1977 Feb; 29(1):35-48. PubMed ID: 847308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased venous PCO2 enhances dynamic responses of avian intrapulmonary chemoreceptors.
    Hempleman SC; Bebout DE
    Am J Physiol; 1994 Jan; 266(1 Pt 2):R15-9. PubMed ID: 8304535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature effects on CO2-sensitive intrapulmonary chemoreceptors in the lizard, Tupinambis nigropunctatus.
    Douse MA; Mitchell GS
    Respir Physiol; 1988 Jun; 72(3):327-41. PubMed ID: 2841736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of regional ventilation-perfusion inhomogeneity in the avian lung. Implications for gas exchange and intrapulmonary chemoreceptor microenvironment.
    Hempleman SC; Adamson TP; Burger RE
    Comput Programs Biomed; 1983; 17(1-2):11-8. PubMed ID: 6689288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rate of rise of intrapulmonary CO2 drives breathing frequency in garter snakes.
    Furilla RA
    J Appl Physiol (1985); 1991 Dec; 71(6):2304-8. PubMed ID: 1778927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preterm infants: ventilation and P100 changes with CO2 and inspiratory resistive loading.
    Duara S; Abbasi S; Shaffer TH; Fox WW
    J Appl Physiol (1985); 1985 Jun; 58(6):1982-7. PubMed ID: 3924886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inspiratory airway CO2 loading in the pony.
    Shirer HW; Orr JA; Loker JL
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Oct; 57(4):1097-103. PubMed ID: 6438028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.