These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31504177)

  • 21. Deep learning of protein sequence design of protein-protein interactions.
    Syrlybaeva R; Strauch EM
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36377772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DeepCoil-a fast and accurate prediction of coiled-coil domains in protein sequences.
    Ludwiczak J; Winski A; Szczepaniak K; Alva V; Dunin-Horkawicz S
    Bioinformatics; 2019 Aug; 35(16):2790-2795. PubMed ID: 30601942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developing structural profile matrices for protein secondary structure and solvent accessibility prediction.
    Aydin Z; Azginoglu N; Bilgin HI; Celik M
    Bioinformatics; 2019 Oct; 35(20):4004-4010. PubMed ID: 30937435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The solution structure of the bacterial HSP70 chaperone protein domain DnaK(393-507) in complex with the peptide NRLLLTG.
    Stevens SY; Cai S; Pellecchia M; Zuiderweg ER
    Protein Sci; 2003 Nov; 12(11):2588-96. PubMed ID: 14573869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain.
    Sriram M; Osipiuk J; Freeman B; Morimoto R; Joachimiak A
    Structure; 1997 Mar; 5(3):403-14. PubMed ID: 9083109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The GCTx format and cmap{Py, R, M, J} packages: resources for optimized storage and integrated traversal of annotated dense matrices.
    Enache OM; Lahr DL; Natoli TE; Litichevskiy L; Wadden D; Flynn C; Gould J; Asiedu JK; Narayan R; Subramanian A
    Bioinformatics; 2019 Apr; 35(8):1427-1429. PubMed ID: 30203022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic generation of bioinformatics tools for predicting protein-ligand binding sites.
    Komiyama Y; Banno M; Ueki K; Saad G; Shimizu K
    Bioinformatics; 2016 Mar; 32(6):901-7. PubMed ID: 26545824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone.
    Rüdiger S; Schneider-Mergener J; Bukau B
    EMBO J; 2001 Mar; 20(5):1042-50. PubMed ID: 11230128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protease target prediction via matrix factorization.
    Marini S; Vitali F; Rampazzi S; Demartini A; Akutsu T
    Bioinformatics; 2019 Mar; 35(6):923-929. PubMed ID: 30169576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. VisFeature: a stand-alone program for visualizing and analyzing statistical features of biological sequences.
    Wang J; Du PF; Xue XY; Li GP; Zhou YK; Zhao W; Lin H; Chen W
    Bioinformatics; 2020 Feb; 36(4):1277-1278. PubMed ID: 31504195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ.
    Pierpaoli EV; Gisler SM; Christen P
    Biochemistry; 1998 Nov; 37(47):16741-8. PubMed ID: 9843444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential proteostatic regulation of insoluble and abundant proteins.
    Ramakrishnan R; Houben B; Rousseau F; Schymkowitz J
    Bioinformatics; 2019 Oct; 35(20):4098-4107. PubMed ID: 30903148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Hsc66-Hsc20 chaperone system in Escherichia coli: chaperone activity and interactions with the DnaK-DnaJ-grpE system.
    Silberg JJ; Hoff KG; Vickery LE
    J Bacteriol; 1998 Dec; 180(24):6617-24. PubMed ID: 9852006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions.
    Sekhar A; Velyvis A; Zoltsman G; Rosenzweig R; Bouvignies G; Kay LE
    Elife; 2018 Feb; 7():. PubMed ID: 29460778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing Allosteric Inhibition Mechanisms of the Hsp70 Chaperone Proteins Using Molecular Dynamics Simulations and Analysis of the Residue Interaction Networks.
    Stetz G; Verkhivker GM
    J Chem Inf Model; 2016 Aug; 56(8):1490-517. PubMed ID: 27447295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural analysis of the interactions between hsp70 chaperones and the yeast DNA replication protein Orc4p.
    Álamo MM; Sánchez-Gorostiaga A; Serrano AM; Prieto A; Cuéllar J; Martín-Benito J; Valpuesta JM; Giraldo R
    J Mol Biol; 2010 Oct; 403(1):24-39. PubMed ID: 20732327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving protein function prediction using protein sequence and GO-term similarities.
    Makrodimitris S; van Ham RCHJ; Reinders MJT
    Bioinformatics; 2019 Apr; 35(7):1116-1124. PubMed ID: 30169569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A conserved loop in the ATPase domain of the DnaK chaperone is essential for stable binding of GrpE.
    Buchberger A; Schröder H; Büttner M; Valencia A; Bukau B
    Nat Struct Biol; 1994 Feb; 1(2):95-101. PubMed ID: 7656024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of the targeting sequence of chloroplast precursors with Hsp70 molecular chaperones.
    Rial DV; Arakaki AK; Ceccarelli EA
    Eur J Biochem; 2000 Oct; 267(20):6239-48. PubMed ID: 11012678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE.
    Szabo A; Langer T; Schröder H; Flanagan J; Bukau B; Hartl FU
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10345-9. PubMed ID: 7937953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.