These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31504177)

  • 41. Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data.
    Huang D; Song B; Wei J; Su J; Coenen F; Meng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i222-i230. PubMed ID: 34252943
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mapping the conformation of a client protein through the Hsp70 functional cycle.
    Sekhar A; Rosenzweig R; Bouvignies G; Kay LE
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10395-400. PubMed ID: 26240333
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone-substrate ensembles.
    Rosenzweig R; Sekhar A; Nagesh J; Kay LE
    Elife; 2017 Jul; 6():. PubMed ID: 28708484
    [TBL] [Abstract][Full Text] [Related]  

  • 44. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.
    Filatov G; Bauwens B; Kertész-Farkas A
    Bioinformatics; 2018 Oct; 34(19):3281-3288. PubMed ID: 29741583
    [TBL] [Abstract][Full Text] [Related]  

  • 45. BIPSPI: a method for the prediction of partner-specific protein-protein interfaces.
    Sanchez-Garcia R; Sorzano COS; Carazo JM; Segura J
    Bioinformatics; 2019 Feb; 35(3):470-477. PubMed ID: 30020406
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy.
    Mayer MP; Laufen T; Paal K; McCarty JS; Bukau B
    J Mol Biol; 1999 Jun; 289(4):1131-44. PubMed ID: 10369787
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Parapred: antibody paratope prediction using convolutional and recurrent neural networks.
    Liberis E; Velickovic P; Sormanni P; Vendruscolo M; Liò P
    Bioinformatics; 2018 Sep; 34(17):2944-2950. PubMed ID: 29672675
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hsp70 biases the folding pathways of client proteins.
    Sekhar A; Rosenzweig R; Bouvignies G; Kay LE
    Proc Natl Acad Sci U S A; 2016 May; 113(20):E2794-801. PubMed ID: 27140645
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction.
    Wang H; Kurochkin AV; Pang Y; Hu W; Flynn GC; Zuiderweg ER
    Biochemistry; 1998 Jun; 37(22):7929-40. PubMed ID: 9609686
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biological sequence modeling with convolutional kernel networks.
    Chen D; Jacob L; Mairal J
    Bioinformatics; 2019 Sep; 35(18):3294-3302. PubMed ID: 30753280
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations.
    Antes I; Siu SW; Lengauer T
    Bioinformatics; 2006 Jul; 22(14):e16-24. PubMed ID: 16873467
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multifaceted protein-protein interaction prediction based on Siamese residual RCNN.
    Chen M; Ju CJ; Zhou G; Chen X; Zhang T; Chang KW; Zaniolo C; Wang W
    Bioinformatics; 2019 Jul; 35(14):i305-i314. PubMed ID: 31510705
    [TBL] [Abstract][Full Text] [Related]  

  • 53. How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions.
    Clerico EM; Tilitsky JM; Meng W; Gierasch LM
    J Mol Biol; 2015 Apr; 427(7):1575-88. PubMed ID: 25683596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding.
    Kragol G; Lovas S; Varadi G; Condie BA; Hoffmann R; Otvos L
    Biochemistry; 2001 Mar; 40(10):3016-26. PubMed ID: 11258915
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK.
    Zahn M; Berthold N; Kieslich B; Knappe D; Hoffmann R; Sträter N
    J Mol Biol; 2013 Jul; 425(14):2463-79. PubMed ID: 23562829
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification and characterization of a human mitochondrial homologue of the bacterial co-chaperone GrpE.
    Choglay AA; Chapple JP; Blatch GL; Cheetham ME
    Gene; 2001 Apr; 267(1):125-34. PubMed ID: 11311562
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
    Landry SJ
    Biochemistry; 2003 May; 42(17):4926-36. PubMed ID: 12718534
    [TBL] [Abstract][Full Text] [Related]  

  • 58. StackDPPred: a stacking based prediction of DNA-binding protein from sequence.
    Mishra A; Pokhrel P; Hoque MT
    Bioinformatics; 2019 Feb; 35(3):433-441. PubMed ID: 30032213
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ALeS: adaptive-length spaced-seed design.
    Mallik A; Ilie L
    Bioinformatics; 2021 Jun; 37(9):1206-1210. PubMed ID: 34107042
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integrating ab initio and template-based algorithms for protein-protein complex structure prediction.
    Vangaveti S; Vreven T; Zhang Y; Weng Z
    Bioinformatics; 2020 Feb; 36(3):751-757. PubMed ID: 31393558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.