BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31504193)

  • 1. Identifying molecular recognition features in intrinsically disordered regions of proteins by transfer learning.
    Hanson J; Litfin T; Paliwal K; Zhou Y
    Bioinformatics; 2020 Feb; 36(4):1107-1113. PubMed ID: 31504193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPOT-Disorder2: Improved Protein Intrinsic Disorder Prediction by Ensembled Deep Learning.
    Hanson J; Paliwal KK; Litfin T; Zhou Y
    Genomics Proteomics Bioinformatics; 2019 Dec; 17(6):645-656. PubMed ID: 32173600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.
    Sharma R; Raicar G; Tsunoda T; Patil A; Sharma A
    Bioinformatics; 2018 Jun; 34(11):1850-1858. PubMed ID: 29360926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoRFPred-plus: Computational Identification of MoRFs in Protein Sequences using Physicochemical Properties and HMM profiles.
    Sharma R; Bayarjargal M; Tsunoda T; Patil A; Sharma A
    J Theor Biol; 2018 Jan; 437():9-16. PubMed ID: 29042212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins.
    Disfani FM; Hsu WL; Mizianty MJ; Oldfield CJ; Xue B; Dunker AK; Uversky VN; Kurgan L
    Bioinformatics; 2012 Jun; 28(12):i75-83. PubMed ID: 22689782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.
    Hanson J; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Mar; 33(5):685-692. PubMed ID: 28011771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying short disorder-to-order binding regions in disordered proteins with a deep convolutional neural network method.
    Fang C; Moriwaki Y; Tian A; Li C; Shimizu K
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950004. PubMed ID: 30866736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MoRFPred_en: Sequence-based prediction of MoRFs using an ensemble learning strategy.
    Fang C; Moriwaki Y; Li C; Shimizu K
    J Bioinform Comput Biol; 2019 Dec; 17(6):1940015. PubMed ID: 32019410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Identification of MoRFs in Protein Sequences Using Hierarchical Application of Bayes Rule.
    Malhis N; Wong ET; Nassar R; Gsponer J
    PLoS One; 2015; 10(10):e0141603. PubMed ID: 26517836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational identification of MoRFs in protein sequences.
    Malhis N; Gsponer J
    Bioinformatics; 2015 Jun; 31(11):1738-44. PubMed ID: 25637562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MoRF_ESM: Prediction of MoRFs in disordered proteins based on a deep transformer protein language model.
    Fang C; He J; Yamana H
    J Bioinform Comput Biol; 2024 Apr; 22(2):2450006. PubMed ID: 38812466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovering MoRFs by trisecting intrinsically disordered protein sequence into terminals and middle regions.
    Sharma R; Sharma A; Patil A; Tsunoda T
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):378. PubMed ID: 30717652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OPAL+: Length-Specific MoRF Prediction in Intrinsically Disordered Protein Sequences.
    Sharma R; Sharma A; Raicar G; Tsunoda T; Patil A
    Proteomics; 2019 Mar; 19(6):e1800058. PubMed ID: 30324701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate Single-Sequence Prediction of Protein Intrinsic Disorder by an Ensemble of Deep Recurrent and Convolutional Architectures.
    Hanson J; Paliwal K; Zhou Y
    J Chem Inf Model; 2018 Nov; 58(11):2369-2376. PubMed ID: 30395465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MoRF-FUNCpred: Molecular Recognition Feature Function Prediction Based on Multi-Label Learning and Ensemble Learning.
    Li H; Pang Y; Liu B; Yu L
    Front Pharmacol; 2022; 13():856417. PubMed ID: 35350759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting MoRFs in protein sequences using HMM profiles.
    Sharma R; Kumar S; Tsunoda T; Patil A; Sharma A
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):504. PubMed ID: 28155710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Prediction of MoRFs, Short Disorder-to-order Transitioning Protein Binding Regions.
    Katuwawala A; Peng Z; Yang J; Kurgan L
    Comput Struct Biotechnol J; 2019; 17():454-462. PubMed ID: 31007871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retro-MoRFs: identifying protein binding sites by normal and reverse alignment and intrinsic disorder prediction.
    Xue B; Dunker AK; Uversky VN
    Int J Mol Sci; 2010 Sep; 11(10):3725-47. PubMed ID: 21152297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein embeddings predict binding residues in disordered regions.
    Jahn LR; Marquet C; Heinzinger M; Rost B
    Sci Rep; 2024 Jun; 14(1):13566. PubMed ID: 38866950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Functions of Disordered Proteins with MoRFpred.
    Oldfield CJ; Uversky VN; Kurgan L
    Methods Mol Biol; 2019; 1851():337-352. PubMed ID: 30298407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.