BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 31504235)

  • 1. YTH domain family 2 promotes lung cancer cell growth by facilitating 6-phosphogluconate dehydrogenase mRNA translation.
    Sheng H; Li Z; Su S; Sun W; Zhang X; Li L; Li J; Liu S; Lu B; Zhang S; Shan C
    Carcinogenesis; 2020 Jul; 41(5):541-550. PubMed ID: 31504235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 6-Phosphogluconate dehydrogenase fuels multiple aspects of cancer cells: From cancer initiation to metastasis and chemoresistance.
    Sarfraz I; Rasul A; Hussain G; Shah MA; Zahoor AF; Asrar M; Selamoglu Z; Ji XY; Adem Ş; Sarker SD
    Biofactors; 2020 Jul; 46(4):550-562. PubMed ID: 32039535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibiting 6-phosphogluconate dehydrogenase enhances chemotherapy efficacy in cervical cancer via AMPK-independent inhibition of RhoA and Rac1.
    Guo H; Xiang Z; Zhang Y; Sun D
    Clin Transl Oncol; 2019 Apr; 21(4):404-411. PubMed ID: 30182212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 6-Phosphogluconate dehydrogenase regulates tumor cell migration in vitro by regulating receptor tyrosine kinase c-Met.
    Chan B; VanderLaan PA; Sukhatme VP
    Biochem Biophys Res Commun; 2013 Sep; 439(2):247-51. PubMed ID: 23973484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence.
    Sukhatme VP; Chan B
    FEBS Lett; 2012 Jul; 586(16):2389-95. PubMed ID: 22677172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical Role of 6-Phosphogluconate Dehydrogenase in TAp73-Mediated Cancer Cell Proliferation.
    Qiao R; Wei M; Chen H; Zhang X; Zhang J; Gao L; Ma H; Wang Y; Li L
    Mol Cancer Res; 2023 Aug; 21(8):825-835. PubMed ID: 37071129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation.
    Zhang C; Huang S; Zhuang H; Ruan S; Zhou Z; Huang K; Ji F; Ma Z; Hou B; He X
    Oncogene; 2020 Jun; 39(23):4507-4518. PubMed ID: 32366907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance.
    Liu R; Li W; Tao B; Wang X; Yang Z; Zhang Y; Wang C; Liu R; Gao H; Liang J; Yang W
    Nat Commun; 2019 Mar; 10(1):991. PubMed ID: 30824700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-145 Modulates
    Yang Z; Li J; Feng G; Gao S; Wang Y; Zhang S; Liu Y; Ye L; Li Y; Zhang X
    J Biol Chem; 2017 Mar; 292(9):3614-3623. PubMed ID: 28104805
    [No Abstract]   [Full Text] [Related]  

  • 10. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner.
    Guo X; Li K; Jiang W; Hu Y; Xiao W; Huang Y; Feng Y; Pan Q; Wan R
    Mol Cancer; 2020 May; 19(1):91. PubMed ID: 32429928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. YTHDF2 protein stabilization by the deubiquitinase OTUB1 promotes prostate cancer cell proliferation via PRSS8 mRNA degradation.
    Zhao X; Lv S; Li N; Zou Q; Sun L; Song T
    J Biol Chem; 2024 Apr; 300(4):107152. PubMed ID: 38462165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTO demethylates m6A modifications in HOXB13 mRNA and promotes endometrial cancer metastasis by activating the WNT signalling pathway.
    Zhang L; Wan Y; Zhang Z; Jiang Y; Lang J; Cheng W; Zhu L
    RNA Biol; 2021 Sep; 18(9):1265-1278. PubMed ID: 33103587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gambogic acid exhibits promising anticancer activity by inhibiting the pentose phosphate pathway in lung cancer mouse model.
    Zhang Q; Zhang Y; Wang C; Tang H; Ma A; Gao P; Shi Q; Wang G; Shen S; Zhang J; Xia F; Zhu Y; Wang J
    Phytomedicine; 2024 Jul; 129():155657. PubMed ID: 38692076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth.
    Shan C; Elf S; Ji Q; Kang HB; Zhou L; Hitosugi T; Jin L; Lin R; Zhang L; Seo JH; Xie J; Tucker M; Gu TL; Sudderth J; Jiang L; DeBerardinis RJ; Wu S; Li Y; Mao H; Chen PR; Wang D; Chen GZ; Lonial S; Arellano ML; Khoury HJ; Khuri FR; Lee BH; Brat DJ; Ye K; Boggon TJ; He C; Kang S; Fan J; Chen J
    Mol Cell; 2014 Aug; 55(4):552-65. PubMed ID: 25042803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma.
    Zhong L; Liao D; Zhang M; Zeng C; Li X; Zhang R; Ma H; Kang T
    Cancer Lett; 2019 Feb; 442():252-261. PubMed ID: 30423408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation.
    Liu T; Wei Q; Jin J; Luo Q; Liu Y; Yang Y; Cheng C; Li L; Pi J; Si Y; Xiao H; Li L; Rao S; Wang F; Yu J; Yu J; Zou D; Yi P
    Nucleic Acids Res; 2020 Apr; 48(7):3816-3831. PubMed ID: 31996915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 6-Phosphogluconate dehydrogenase (6PGD), a key checkpoint in reprogramming of regulatory T cells metabolism and function.
    Daneshmandi S; Cassel T; Higashi RM; Fan TW; Seth P
    Elife; 2021 Oct; 10():. PubMed ID: 34709178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. YTHDF2 promotes gallbladder cancer progression and gemcitabine resistance via m6A-dependent DAPK3 degradation.
    Bai X; Chen J; Zhang W; Zhou S; Dong L; Huang J; He X
    Cancer Sci; 2023 Nov; 114(11):4299-4313. PubMed ID: 37700438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N6-Methyladenosine Promotes Translation of VEGFA to Accelerate Angiogenesis in Lung Cancer.
    Zhang H; Zhou J; Li J; Wang Z; Chen Z; Lv Z; Ge L; Xie G; Deng G; Rui Y; Huang H; Chen L; Wang H
    Cancer Res; 2023 Jul; 83(13):2208-2225. PubMed ID: 37103476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs.
    Hou G; Zhao X; Li L; Yang Q; Liu X; Huang C; Lu R; Chen R; Wang Y; Jiang B; Yu J
    Nucleic Acids Res; 2021 Mar; 49(5):2859-2877. PubMed ID: 33577677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.