These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 31504262)

  • 21. On time delay estimation and sampling error in resting-state fMRI.
    Raut RV; Mitra A; Snyder AZ; Raichle ME
    Neuroimage; 2019 Jul; 194():211-227. PubMed ID: 30902641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure.
    Marzetti L; Della Penna S; Snyder AZ; Pizzella V; Nolte G; de Pasquale F; Romani GL; Corbetta M
    Neuroimage; 2013 Oct; 79():172-83. PubMed ID: 23631996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain Activity Fluctuations Propagate as Waves Traversing the Cortical Hierarchy.
    Gu Y; Sainburg LE; Kuang S; Han F; Williams JW; Liu Y; Zhang N; Zhang X; Leopold DA; Liu X
    Cereb Cortex; 2021 Jul; 31(9):3986-4005. PubMed ID: 33822908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Periods of rest in fMRI contain individual spontaneous events which are related to slowly fluctuating spontaneous activity.
    Petridou N; Gaudes CC; Dryden IL; Francis ST; Gowland PA
    Hum Brain Mapp; 2013 Jun; 34(6):1319-29. PubMed ID: 22331588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional integration between brain regions at rest occurs in multiple-frequency bands.
    Gohel SR; Biswal BB
    Brain Connect; 2015 Feb; 5(1):23-34. PubMed ID: 24702246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origin of slow spontaneous resting-state neuronal fluctuations in brain networks.
    Krishnan GP; González OC; Bazhenov M
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6858-6863. PubMed ID: 29884650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Slow EEG pattern predicts reduced intrinsic functional connectivity in the default mode network: an inter-subject analysis.
    Hlinka J; Alexakis C; Diukova A; Liddle PF; Auer DP
    Neuroimage; 2010 Oct; 53(1):239-46. PubMed ID: 20538065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
    Huang X; Xu K; Chu C; Jiang T; Yu S
    J Neurosci; 2017 Oct; 37(43):10481-10497. PubMed ID: 28951453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time scale properties of task and resting-state functional connectivity: Detrended partial cross-correlation analysis.
    Ide JS; Li CR
    Neuroimage; 2018 Jun; 173():240-248. PubMed ID: 29454934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
    Archila-Meléndez ME; Sorg C; Preibisch C
    Neuroimage; 2020 Sep; 218():116871. PubMed ID: 32335261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Infraslow Electroencephalographic and Dynamic Resting State Network Activity.
    Grooms JK; Thompson GJ; Pan WJ; Billings J; Schumacher EH; Epstein CM; Keilholz SD
    Brain Connect; 2017 Jun; 7(5):265-280. PubMed ID: 28462586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous Infra-slow Brain Activity Has Unique Spatiotemporal Dynamics and Laminar Structure.
    Mitra A; Kraft A; Wright P; Acland B; Snyder AZ; Rosenthal Z; Czerniewski L; Bauer A; Snyder L; Culver J; Lee JM; Raichle ME
    Neuron; 2018 Apr; 98(2):297-305.e6. PubMed ID: 29606579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lag threads organize the brain's intrinsic activity.
    Mitra A; Snyder AZ; Blazey T; Raichle ME
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):E2235-44. PubMed ID: 25825720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Functional connectivity analysis of the brain network using resting-state FMRI].
    Hayashi T
    Brain Nerve; 2011 Dec; 63(12):1307-18. PubMed ID: 22147450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in resting state fMRI acquisitions for functional connectomics.
    Raimondo L; Oliveira ĹAF; Heij J; Priovoulos N; Kundu P; Leoni RF; van der Zwaag W
    Neuroimage; 2021 Nov; 243():118503. PubMed ID: 34479041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors.
    Deco G; Jirsa VK
    J Neurosci; 2012 Mar; 32(10):3366-75. PubMed ID: 22399758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a large-scale functional brain network during human non-rapid eye movement sleep.
    Spoormaker VI; Schröter MS; Gleiser PM; Andrade KC; Dresler M; Wehrle R; Sämann PG; Czisch M
    J Neurosci; 2010 Aug; 30(34):11379-87. PubMed ID: 20739559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans.
    Rebollo I; Devauchelle AD; Béranger B; Tallon-Baudry C
    Elife; 2018 Mar; 7():. PubMed ID: 29561263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.