BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31504793)

  • 1. Molecular basis of abasic site sensing in single-stranded DNA by the SRAP domain of E. coli yedK.
    Wang N; Bao H; Chen L; Liu Y; Li Y; Wu B; Huang H
    Nucleic Acids Res; 2019 Nov; 47(19):10388-10399. PubMed ID: 31504793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protection of abasic sites during DNA replication by a stable thiazolidine protein-DNA cross-link.
    Thompson PS; Amidon KM; Mohni KN; Cortez D; Eichman BF
    Nat Struct Mol Biol; 2019 Jul; 26(7):613-618. PubMed ID: 31235915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SOS response-associated peptidase (SRAP) domain of YedK catalyzes ring opening of abasic sites and reversal of its DNA-protein cross-link.
    Paulin KA; Cortez D; Eichman BF
    J Biol Chem; 2022 Sep; 298(9):102307. PubMed ID: 35934051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural biology of DNA abasic site protection by SRAP proteins.
    Amidon KM; Eichman BF
    DNA Repair (Amst); 2020 Oct; 94():102903. PubMed ID: 32663791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial YedK represses plasmid DNA replication and transformation through its DNA single-strand binding activity.
    Hu W; Wang Y; Yang B; Lin C; Yu H; Liu G; Deng Z; Ou HY; He X
    Microbiol Res; 2021 Nov; 252():126852. PubMed ID: 34454309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HMCES Maintains Replication Fork Progression and Prevents Double-Strand Breaks in Response to APOBEC Deamination and Abasic Site Formation.
    Mehta KPM; Lovejoy CA; Zhao R; Heintzman DR; Cortez D
    Cell Rep; 2020 Jun; 31(9):107705. PubMed ID: 32492421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and Properties of DNA Adducts Generated by Reactions of Abasic Sites with 1,2-Aminothiols Including Cysteamine, Cysteine Methyl Ester, and Peptides Containing
    Gomina A; Islam T; Shim G; Lei Z; Gates KS
    Chem Res Toxicol; 2024 Feb; 37(2):395-406. PubMed ID: 38181204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of HMCES interactions with abasic DNA and multivalent substrate recognition.
    Halabelian L; Ravichandran M; Li Y; Zeng H; Rao A; Aravind L; Arrowsmith CH
    Nat Struct Mol Biol; 2019 Jul; 26(7):607-612. PubMed ID: 31235913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel mechanisms for the removal of strong replication-blocking HMCES- and thiazolidine-DNA adducts in humans.
    Sugimoto Y; Masuda Y; Iwai S; Miyake Y; Kanao R; Masutani C
    Nucleic Acids Res; 2023 Jun; 51(10):4959-4981. PubMed ID: 37021581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A non-proteolytic release mechanism for HMCES-DNA-protein crosslinks.
    Donsbach M; Dürauer S; Grünert F; Nguyen KT; Nigam R; Yaneva D; Weickert P; Bezalel-Buch R; Semlow DR; Stingele J
    EMBO J; 2023 Sep; 42(18):e113360. PubMed ID: 37519246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HMCES Maintains Genome Integrity by Shielding Abasic Sites in Single-Strand DNA.
    Mohni KN; Wessel SR; Zhao R; Wojciechowski AC; Luzwick JW; Layden H; Eichman BF; Thompson PS; Mehta KPM; Cortez D
    Cell; 2019 Jan; 176(1-2):144-153.e13. PubMed ID: 30554877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-reversal facilitates the resolution of HMCES DNA-protein crosslinks in cells.
    Rua-Fernandez J; Lovejoy CA; Mehta KPM; Paulin KA; Toudji YT; Giansanti C; Eichman BF; Cortez D
    Cell Rep; 2023 Nov; 42(11):113427. PubMed ID: 37950866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uracil DNA glycosylase (UDG) activities in Bradyrhizobium diazoefficiens: characterization of a new class of UDG with broad substrate specificity.
    Chembazhi UV; Patil VV; Sah S; Reeve W; Tiwari RP; Woo E; Varshney U
    Nucleic Acids Res; 2017 Jun; 45(10):5863-5876. PubMed ID: 28369586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-terminal domain of human uracil DNA glycosylase (hUNG2) promotes targeting to uracil sites adjacent to ssDNA-dsDNA junctions.
    Weiser BP; Rodriguez G; Cole PA; Stivers JT
    Nucleic Acids Res; 2018 Aug; 46(14):7169-7178. PubMed ID: 29917162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleavage of single- and double-stranded DNAs containing an abasic residue by Escherichia coli exonuclease III (AP endonuclease VI).
    Shida T; Noda M; Sekiguchi J
    Nucleic Acids Res; 1996 Nov; 24(22):4572-6. PubMed ID: 8948651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the N-terminal domain of Oxytricha nova telomere end-binding protein alpha subunit both uncomplexed and complexed with telomeric ssDNA.
    Classen S; Ruggles JA; Schultz SC
    J Mol Biol; 2001 Dec; 314(5):1113-25. PubMed ID: 11743727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical basis of hyper-recombinogenic activity of Pseudomonas aeruginosa RecA protein in Escherichia coli cells.
    Namsaraev EA; Baitin D; Bakhlanova IV; Alexseyev AA; Ogawa H; Lanzov VA
    Mol Microbiol; 1998 Feb; 27(4):727-38. PubMed ID: 9515699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repair of chromosomal abasic sites in vivo involves at least three different repair pathways.
    Otterlei M; Kavli B; Standal R; Skjelbred C; Bharati S; Krokan HE
    EMBO J; 2000 Oct; 19(20):5542-51. PubMed ID: 11032821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and biochemical characterization of a novel umuD mutation: insights into a mechanism for UmuD self-cleavage.
    Sutton MD; Kim M; Walker GC
    J Bacteriol; 2001 Jan; 183(1):347-57. PubMed ID: 11114935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of histidine in complex formation of PriB and single-stranded DNA.
    Fujiyama S; Abe Y; Takenawa T; Aramaki T; Shioi S; Katayama T; Ueda T
    Biochim Biophys Acta; 2014 Feb; 1844(2):299-307. PubMed ID: 24200676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.