These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31505217)

  • 1. Metabolic engineering applications of the Escherichia coli bacterial artificial chromosome.
    Sjöberg G; Guevara-Martínez M; van Maris AJA; Gustavsson M
    J Biotechnol; 2019 Nov; 305():43-50. PubMed ID: 31505217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Techniques for chromosomal integration and expression optimization in Escherichia coli.
    Ou B; Garcia C; Wang Y; Zhang W; Zhu G
    Biotechnol Bioeng; 2018 Oct; 115(10):2467-2478. PubMed ID: 29981268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration.
    Wang J; Niyompanich S; Tai YS; Wang J; Bai W; Mahida P; Gao T; Zhang K
    Appl Environ Microbiol; 2016 Dec; 82(24):7176-7184. PubMed ID: 27736790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields.
    Liu X; Lin J; Hu H; Zhou B; Zhu B
    Enzyme Microb Technol; 2016 Jan; 82():96-104. PubMed ID: 26672454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering.
    Cui YY; Ling C; Zhang YY; Huang J; Liu JZ
    Microb Cell Fact; 2014 Feb; 13():21. PubMed ID: 24512078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria.
    Jones KL; Kim SW; Keasling JD
    Metab Eng; 2000 Oct; 2(4):328-38. PubMed ID: 11120644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized gene expression from bacterial chromosome by high-throughput integration and screening.
    Saleski TE; Chung MT; Carruthers DN; Khasbaatar A; Kurabayashi K; Lin XN
    Sci Adv; 2021 Feb; 7(7):. PubMed ID: 33579713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome.
    Juhas M; Ajioka JW
    J Microbiol Methods; 2016 Jun; 125():1-7. PubMed ID: 27033694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel Integration and Chromosomal Expansion of Metabolic Pathways.
    Goyal G; Costello Z; Alonso-Gutierrez J; Kang A; Lee TS; Garcia Martin H; Hillson NJ
    ACS Synth Biol; 2018 Nov; 7(11):2566-2576. PubMed ID: 30351913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Step Bacterial Artificial Chromosome (BAC) Modification: Transformation of the BAC Host with the RecA Vector.
    Heintz N; Gong S
    Cold Spring Harb Protoc; 2020 Jul; 2020(7):098129. PubMed ID: 32611779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational engineering of Escherichia coli strains for plasmid biopharmaceutical manufacturing.
    Gonçalves GA; Bower DM; Prazeres DM; Monteiro GA; Prather KL
    Biotechnol J; 2012 Feb; 7(2):251-61. PubMed ID: 21913330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Step Bacterial Artificial Chromosome (BAC) Engineering: Preparation of Shuttle Vector DNA.
    Heintz N; Gong S
    Cold Spring Harb Protoc; 2020 Apr; 2020(4):098038. PubMed ID: 32238589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli.
    Xu P; Vansiri A; Bhan N; Koffas MA
    ACS Synth Biol; 2012 Jul; 1(7):256-66. PubMed ID: 23651248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Post-translational Metabolic Switch Enables Complete Decoupling of Bacterial Growth from Biopolymer Production in Engineered Escherichia coli.
    Durante-Rodríguez G; de Lorenzo V; Nikel PI
    ACS Synth Biol; 2018 Nov; 7(11):2686-2697. PubMed ID: 30346720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Step Bacterial Artificial Chromosome (BAC) Engineering: Preparation and Verification of the Recombinant Shuttle Vector.
    Heintz N; Gong S
    Cold Spring Harb Protoc; 2020 Apr; 2020(4):098061. PubMed ID: 32238592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making BAC transgene constructs with lambda-red recombineering system for transgenic animals or cell lines.
    Holmes S; Lyman S; Hsu JK; Cheng J
    Methods Mol Biol; 2015; 1227():71-98. PubMed ID: 25239742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of Escherichia coli for Lycopene Production Through Promoter Engineering.
    Shen HJ; Hu JJ; Li XR; Liu JZ
    Curr Pharm Biotechnol; 2015; 16(12):1094-103. PubMed ID: 26238682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Step Bacterial Artificial Chromosome (BAC) Modification: Preparation of Plasmids.
    Heintz N; Gong S
    Cold Spring Harb Protoc; 2020 Jul; 2020(7):098095. PubMed ID: 32611776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable and Efficient Biosynthesis of 5-Aminolevulinic Acid Using Plasmid-Free Escherichia coli.
    Cui Z; Jiang Z; Zhang J; Zheng H; Jiang X; Gong K; Liang Q; Wang Q; Qi Q
    J Agric Food Chem; 2019 Feb; 67(5):1478-1483. PubMed ID: 30644739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.