BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31505330)

  • 21. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles.
    Li S; Ma H; Wallis LK; Etterson MA; Riley B; Hoff DJ; Diamond SA
    Sci Total Environ; 2016 Jan; 542(Pt A):324-33. PubMed ID: 26519592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal cation complexation with natural organic matter in aqueous solutions: molecular dynamics simulations and potentials of mean force.
    Iskrenova-Tchoukova E; Kalinichev AG; Kirkpatrick RJ
    Langmuir; 2010 Oct; 26(20):15909-19. PubMed ID: 20857966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aggregation and Stability of Reduced Graphene Oxide: Complex Roles of Divalent Cations, pH, and Natural Organic Matter.
    Chowdhury I; Mansukhani ND; Guiney LM; Hersam MC; Bouchard D
    Environ Sci Technol; 2015 Sep; 49(18):10886-93. PubMed ID: 26280799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of natural organic matter type and concentration on the aggregation of citrate-stabilized gold nanoparticles.
    Nason JA; McDowell SA; Callahan TW
    J Environ Monit; 2012 Jul; 14(7):1885-92. PubMed ID: 22495395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative study on aggregation and sedimentation of natural goethite and artificial Fe
    Wu A; Zhao X; Yang C; Wang J; Wang X; Liang W; Zhou L; Teng M; Niu L; Tang Z; Hou G; Wu F
    J Hazard Mater; 2022 Aug; 435():128876. PubMed ID: 35468390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative characterization of non-DLVO factors in the aggregation of black soil colloids.
    Gao X; Kou Q; Ren K; Zuo Y; Xu Y; Zhang Y; Lal R; Wang J
    Sci Rep; 2022 Mar; 12(1):5064. PubMed ID: 35332206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preferential interactions of surface-bound engineered single stranded DNA with highly aromatic natural organic matter: Mechanistic insights and implications for optimizing practical aquatic applications.
    Peng B; Liao P; Jiang Y
    Water Res; 2022 Sep; 223():119015. PubMed ID: 36044796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine.
    Batista APS; Teixeira ACSC; Cooper WJ; Cottrell BA
    Water Res; 2016 Apr; 93():20-29. PubMed ID: 26878479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles.
    Zhang Y; Chen Y; Westerhoff P; Crittenden J
    Water Res; 2009 Sep; 43(17):4249-57. PubMed ID: 19577783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colloidal stability of cellulose nanocrystals in aqueous solutions containing monovalent, divalent, and trivalent inorganic salts.
    Cao T; Elimelech M
    J Colloid Interface Sci; 2021 Feb; 584():456-463. PubMed ID: 33091869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-scale modeling of natural organic matter-heavy metal cations interactions: Aggregation and stabilization mechanisms.
    Zhou Z; Zhang C; Xi M; Ma H; Jia H
    Water Res; 2023 Jun; 238():120007. PubMed ID: 37121201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of fulvic acids on the electrochemical reactions and mass transfer properties of organic cation toluidine blue: Results of measurements by the method of rotating ring-disc electrode.
    Liu S; Han W; Korshin GV
    Water Res; 2020 Oct; 184():116151. PubMed ID: 32682080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aggregation and stability of sulfate-modified polystyrene nanoplastics in synthetic and natural waters.
    Wang J; Zhao X; Wu A; Tang Z; Niu L; Wu F; Wang F; Zhao T; Fu Z
    Environ Pollut; 2021 Jan; 268(Pt A):114240. PubMed ID: 33152633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural organic matter flocculation behavior controls lead phosphate particle aggregation by mono- and divalent cations.
    Zhao J; Mathew RA; Yang DS; Vekilov PG; Hu Y; Louie SM
    Sci Total Environ; 2023 Mar; 866():161346. PubMed ID: 36603637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of natural organic matter and ionic species on membrane surface charge.
    Shim Y; Lee HJ; Lee S; Moon SH; Cho J
    Environ Sci Technol; 2002 Sep; 36(17):3864-71. PubMed ID: 12322762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions between rotavirus and Suwannee River organic matter: aggregation, deposition, and adhesion force measurement.
    Gutierrez L; Nguyen TH
    Environ Sci Technol; 2012 Aug; 46(16):8705-13. PubMed ID: 22834686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organic Functionalized Graphene Oxide Behavior in Water.
    Kim C; Lee J; Wang W; Fortner J
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32599799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Competitive co-adsorption of bacteriophage MS2 and natural organic matter onto multiwalled carbon nanotubes.
    Jacquin C; Yu D; Sander M; Domagala KW; Traber J; Morgenroth E; Julian TR
    Water Res X; 2020 Dec; 9():100058. PubMed ID: 32613183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions between natural organic matter (NOM) and the cationic dye toluidine blue at varying pHs and ionic strengths: Effects of NOM charges and Donnan gel potentials.
    Xie X; Guo H; Yan M; Korshin G
    Chemosphere; 2019 Dec; 236():124272. PubMed ID: 31310983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.
    Stankus DP; Lohse SE; Hutchison JE; Nason JA
    Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.