These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains. Kentepozidou E; Aitken SJ; Feig C; Stefflova K; Ibarra-Soria X; Odom DT; Roller M; Flicek P Genome Biol; 2020 Jan; 21(1):5. PubMed ID: 31910870 [TBL] [Abstract][Full Text] [Related]
3. CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Llères D; Moindrot B; Pathak R; Piras V; Matelot M; Pignard B; Marchand A; Poncelet M; Perrin A; Tellier V; Feil R; Noordermeer D Genome Biol; 2019 Dec; 20(1):272. PubMed ID: 31831055 [TBL] [Abstract][Full Text] [Related]
4. Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Hanssen LLP; Kassouf MT; Oudelaar AM; Biggs D; Preece C; Downes DJ; Gosden M; Sharpe JA; Sloane-Stanley JA; Hughes JR; Davies B; Higgs DR Nat Cell Biol; 2017 Aug; 19(8):952-961. PubMed ID: 28737770 [TBL] [Abstract][Full Text] [Related]
5. Quantitative differences in TAD border strength underly the TAD hierarchy in Drosophila chromosomes. Luzhin AV; Flyamer IM; Khrameeva EE; Ulianov SV; Razin SV; Gavrilov AA J Cell Biochem; 2019 Mar; 120(3):4494-4503. PubMed ID: 30260021 [TBL] [Abstract][Full Text] [Related]
6. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. Wutz G; Várnai C; Nagasaka K; Cisneros DA; Stocsits RR; Tang W; Schoenfelder S; Jessberger G; Muhar M; Hossain MJ; Walther N; Koch B; Kueblbeck M; Ellenberg J; Zuber J; Fraser P; Peters JM EMBO J; 2017 Dec; 36(24):3573-3599. PubMed ID: 29217591 [TBL] [Abstract][Full Text] [Related]
7. CHD4 Conceals Aberrant CTCF-Binding Sites at TAD Interiors by Regulating Chromatin Accessibility in Mouse Embryonic Stem Cells. Han S; Lee H; Lee AJ; Kim SK; Jung I; Koh GY; Kim TK; Lee D Mol Cells; 2021 Nov; 44(11):805-829. PubMed ID: 34764232 [TBL] [Abstract][Full Text] [Related]
8. A tour of 3D genome with a focus on CTCF. Wang DC; Wang W; Zhang L; Wang X Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214 [TBL] [Abstract][Full Text] [Related]
9. Chromatin Architecture in the Fly: Living without CTCF/Cohesin Loop Extrusion?: Alternating Chromatin States Provide a Basis for Domain Architecture in Drosophila. Matthews NE; White R Bioessays; 2019 Sep; 41(9):e1900048. PubMed ID: 31264253 [TBL] [Abstract][Full Text] [Related]
10. Constitutively bound CTCF sites maintain 3D chromatin architecture and long-range epigenetically regulated domains. Khoury A; Achinger-Kawecka J; Bert SA; Smith GC; French HJ; Luu PL; Peters TJ; Du Q; Parry AJ; Valdes-Mora F; Taberlay PC; Stirzaker C; Statham AL; Clark SJ Nat Commun; 2020 Jan; 11(1):54. PubMed ID: 31911579 [TBL] [Abstract][Full Text] [Related]
11. Making sense of the linear genome, gene function and TADs. Long HS; Greenaway S; Powell G; Mallon AM; Lindgren CM; Simon MM Epigenetics Chromatin; 2022 Jan; 15(1):4. PubMed ID: 35090532 [TBL] [Abstract][Full Text] [Related]
12. Spatial patterns of CTCF sites define the anatomy of TADs and their boundaries. Nanni L; Ceri S; Logie C Genome Biol; 2020 Aug; 21(1):197. PubMed ID: 32782014 [TBL] [Abstract][Full Text] [Related]
14. TADs and Their Borders: Free Movement or Building a Wall? Chang LH; Ghosh S; Noordermeer D J Mol Biol; 2020 Feb; 432(3):643-652. PubMed ID: 31887284 [TBL] [Abstract][Full Text] [Related]
15. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries. Gong Y; Lazaris C; Sakellaropoulos T; Lozano A; Kambadur P; Ntziachristos P; Aifantis I; Tsirigos A Nat Commun; 2018 Feb; 9(1):542. PubMed ID: 29416042 [TBL] [Abstract][Full Text] [Related]
16. 3D chromatin remodeling potentiates transcriptional programs driving cell invasion. Lebeau B; Jangal M; Zhao T; Wong CK; Wong N; Cañedo EC; Hébert S; Aguilar-Mahecha A; Chabot C; Buchanan M; Catterall R; McCaffrey L; Deblois G; Kleinman C; Park M; Basik M; Witcher M Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2203452119. PubMed ID: 36037342 [TBL] [Abstract][Full Text] [Related]
17. Key role for CTCF in establishing chromatin structure in human embryos. Chen X; Ke Y; Wu K; Zhao H; Sun Y; Gao L; Liu Z; Zhang J; Tao W; Hou Z; Liu H; Liu J; Chen ZJ Nature; 2019 Dec; 576(7786):306-310. PubMed ID: 31801998 [TBL] [Abstract][Full Text] [Related]
18. LATS1 controls CTCF chromatin occupancy and hormonal response of 3D-grown breast cancer cells. Ramírez-Cuéllar J; Ferrari R; Sanz RT; Valverde-Santiago M; García-García J; Nacht AS; Castillo D; Le Dily F; Neguembor MV; Malatesta M; Bonnin S; Marti-Renom MA; Beato M; Vicent GP EMBO J; 2024 May; 43(9):1770-1798. PubMed ID: 38565950 [TBL] [Abstract][Full Text] [Related]
19. Topologically associating domain boundaries that are stable across diverse cell types are evolutionarily constrained and enriched for heritability. McArthur E; Capra JA Am J Hum Genet; 2021 Feb; 108(2):269-283. PubMed ID: 33545030 [TBL] [Abstract][Full Text] [Related]
20. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data. Oluwadare O; Cheng J BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]