These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 31505723)
1. [Mouse models for human colorectal cancer with liver metastasis]. Huang XD; Zheng YB; Yang YJ; Yang C; Li HL; Cheng HR Zhonghua Yi Xue Za Zhi; 2019 Sep; 99(34):2701-2705. PubMed ID: 31505723 [No Abstract] [Full Text] [Related]
2. Mouse model of proximal colon-specific tumorigenesis driven by microsatellite instability-induced Cre-mediated inactivation of Apc and activation of Kras. Kawaguchi Y; Hinoi T; Saito Y; Adachi T; Miguchi M; Niitsu H; Sasada T; Shimomura M; Egi H; Oka S; Tanaka S; Chayama K; Sentani K; Oue N; Yasui W; Ohdan H J Gastroenterol; 2016 May; 51(5):447-57. PubMed ID: 26361962 [TBL] [Abstract][Full Text] [Related]
3. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS. Qiu W; Tang SM; Lee S; Turk AT; Sireci AN; Qiu A; Rose C; Xie C; Kitajewski J; Wen HJ; Crawford HC; Sims PA; Hruban RH; Remotti HE; Su GH Gastroenterology; 2016 Jan; 150(1):218-228.e12. PubMed ID: 26408346 [TBL] [Abstract][Full Text] [Related]
4. GNAS(R201H) and Kras(G12D) cooperate to promote murine pancreatic tumorigenesis recapitulating human intraductal papillary mucinous neoplasm. Taki K; Ohmuraya M; Tanji E; Komatsu H; Hashimoto D; Semba K; Araki K; Kawaguchi Y; Baba H; Furukawa T Oncogene; 2016 May; 35(18):2407-12. PubMed ID: 26257060 [TBL] [Abstract][Full Text] [Related]
5. Combined Mutation of Sakai E; Nakayama M; Oshima H; Kouyama Y; Niida A; Fujii S; Ochiai A; Nakayama KI; Mimori K; Suzuki Y; Hong CP; Ock CY; Kim SJ; Oshima M Cancer Res; 2018 Mar; 78(5):1334-1346. PubMed ID: 29282223 [TBL] [Abstract][Full Text] [Related]
6. Endogenous n-3 polyunsaturated fatty acids delay progression of pancreatic ductal adenocarcinoma in Fat-1-p48(Cre/+)-LSL-Kras(G12D/+) mice. Mohammed A; Janakiram NB; Brewer M; Duff A; Lightfoot S; Brush RS; Anderson RE; Rao CV Neoplasia; 2012 Dec; 14(12):1249-59. PubMed ID: 23308056 [TBL] [Abstract][Full Text] [Related]
7. Elevated FBXL6 activates both wild-type KRAS and mutant KRAS Xiong HJ; Yu HQ; Zhang J; Fang L; Wu D; Lin XT; Xie CM Mil Med Res; 2023 Dec; 10(1):68. PubMed ID: 38124228 [TBL] [Abstract][Full Text] [Related]
8. Simvastatin delay progression of pancreatic intraepithelial neoplasia and cancer formation in a genetically engineered mouse model of pancreatic cancer. Fendrich V; Sparn M; Lauth M; Knoop R; Plassmeier L; Bartsch DK; Waldmann J Pancreatology; 2013; 13(5):502-7. PubMed ID: 24075515 [TBL] [Abstract][Full Text] [Related]
9. RAGE gene deletion inhibits the development and progression of ductal neoplasia and prolongs survival in a murine model of pancreatic cancer. DiNorcia J; Lee MK; Moroziewicz DN; Winner M; Suman P; Bao F; Remotti HE; Zou YS; Yan SF; Qiu W; Su GH; Schmidt AM; Allendorf JD J Gastrointest Surg; 2012 Jan; 16(1):104-12; discussion 112. PubMed ID: 22052106 [TBL] [Abstract][Full Text] [Related]
10. Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Kojima K; Vickers SM; Adsay NV; Jhala NC; Kim HG; Schoeb TR; Grizzle WE; Klug CA Cancer Res; 2007 Sep; 67(17):8121-30. PubMed ID: 17804724 [TBL] [Abstract][Full Text] [Related]
11. α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (Kras(G12D), and Kras(G12D)/tp53R270H) mice. Verma RK; Yu W; Shrivastava A; Shankar S; Srivastava RK Sci Rep; 2016 Sep; 6():32743. PubMed ID: 27624879 [TBL] [Abstract][Full Text] [Related]
12. Induction of Gastric Cancer by Successive Oncogenic Activation in the Corpus. Douchi D; Yamamura A; Matsuo J; Melissa Lim YH; Nuttonmanit N; Shimura M; Suda K; Chen S; Pang S; Kohu K; Abe T; Shioi G; Kim G; Shabbir A; Srivastava S; Unno M; Bok-Yan So J; Teh M; Yeoh KG; Chuang LSH; Ito Y Gastroenterology; 2021 Dec; 161(6):1907-1923.e26. PubMed ID: 34391772 [TBL] [Abstract][Full Text] [Related]
13. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice. Hermann PC; Sancho P; Cañamero M; Martinelli P; Madriles F; Michl P; Gress T; de Pascual R; Gandia L; Guerra C; Barbacid M; Wagner M; Vieira CR; Aicher A; Real FX; Sainz B; Heeschen C Gastroenterology; 2014 Nov; 147(5):1119-33.e4. PubMed ID: 25127677 [TBL] [Abstract][Full Text] [Related]
14. Pancreatic Premalignant Lesions Secrete Tissue Inhibitor of Metalloproteinases-1, Which Activates Hepatic Stellate Cells Via CD63 Signaling to Create a Premetastatic Niche in the Liver. Grünwald B; Harant V; Schaten S; Frühschütz M; Spallek R; Höchst B; Stutzer K; Berchtold S; Erkan M; Prokopchuk O; Martignoni M; Esposito I; Heikenwalder M; Gupta A; Siveke J; Saftig P; Knolle P; Wohlleber D; Krüger A Gastroenterology; 2016 Nov; 151(5):1011-1024.e7. PubMed ID: 27506299 [TBL] [Abstract][Full Text] [Related]
15. Development and Characterization of a Genetic Mouse Model of KRAS Mutated Colorectal Cancer. Maitra R; Thavornwatanayong T; Venkatesh MK; Chandy C; Vachss D; Augustine T; Guzik H; Koba W; Liu Q; Goel S Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31766149 [TBL] [Abstract][Full Text] [Related]
16. Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16. Chalabi-Dchar M; Cassant-Sourdy S; Duluc C; Fanjul M; Lulka H; Samain R; Roche C; Breibach F; Delisle MB; Poupot M; Dufresne M; Shimaoka T; Yonehara S; Mathonnet M; Pyronnet S; Bousquet C Gastroenterology; 2015 Jun; 148(7):1452-65. PubMed ID: 25683115 [TBL] [Abstract][Full Text] [Related]
17. Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression. Shang A; Gu C; Zhou C; Yang Y; Chen C; Zeng B; Wu J; Lu W; Wang W; Sun Z; Li D Cell Commun Signal; 2020 Mar; 18(1):52. PubMed ID: 32228650 [TBL] [Abstract][Full Text] [Related]
18. TRIB3 Interacts With β-Catenin and TCF4 to Increase Stem Cell Features of Colorectal Cancer Stem Cells and Tumorigenesis. Hua F; Shang S; Yang YW; Zhang HZ; Xu TL; Yu JJ; Zhou DD; Cui B; Li K; Lv XX; Zhang XW; Liu SS; Yu JM; Wang F; Zhang C; Huang B; Hu ZW Gastroenterology; 2019 Feb; 156(3):708-721.e15. PubMed ID: 30365932 [TBL] [Abstract][Full Text] [Related]
19. Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of colorectal cancer. Itatani Y; Yamamoto T; Zhong C; Molinolo AA; Ruppel J; Hegde P; Taketo MM; Ferrara N Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21598-21608. PubMed ID: 32817421 [TBL] [Abstract][Full Text] [Related]
20. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10). Li H; Yang AL; Chung YT; Zhang W; Liao J; Yang GY Carcinogenesis; 2013 Sep; 34(9):2090-8. PubMed ID: 23689354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]