These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31506049)

  • 1. Multi-objective control in human walking: insight gained through simultaneous degradation of energetic and motor regulation systems.
    McDonald KA; Cusumano JP; Peeling P; Rubenson J
    J R Soc Interface; 2019 Sep; 16(158):20190227. PubMed ID: 31506049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking.
    Dal U; Erdogan T; Resitoglu B; Beydagi H
    Gait Posture; 2010 Mar; 31(3):366-9. PubMed ID: 20129785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetic optimization during over-ground walking in people with and without Down syndrome.
    Agiovlasitis S; Motl RW; Ranadive SM; Fahs CA; Yan H; Echols GH; Rossow L; Fernhall B
    Gait Posture; 2011 Apr; 33(4):630-4. PubMed ID: 21396824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased energy cost and improved gait pattern using a new orthosis in persons with long-term stroke.
    Thijssen DH; Paulus R; van Uden CJ; Kooloos JG; Hopman MT
    Arch Phys Med Rehabil; 2007 Feb; 88(2):181-6. PubMed ID: 17270515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic cost of over ground gait in younger stroke patients and healthy controls.
    Platts MM; Rafferty D; Paul L
    Med Sci Sports Exerc; 2006 Jun; 38(6):1041-6. PubMed ID: 16775542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bodyweight support alters the relationship between preferred walking speed and cost of transport.
    Kraft JC; Augustine JA; Fiddler RE; Lewis C; Dames KD
    Hum Mov Sci; 2023 Apr; 88():103068. PubMed ID: 36806975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuel oxidation in relation to walking speed: influence of gradient and external load.
    Entin PL; Gest C; Trancik S; Richard Coast J
    Eur J Appl Physiol; 2010 Oct; 110(3):515-21. PubMed ID: 20535618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of an overground walking training on gait performance in healthy 65- to 80-year-olds.
    Malatesta D; Simar D; Ben Saad H; Préfaut C; Caillaud C
    Exp Gerontol; 2010 Jun; 45(6):427-34. PubMed ID: 20303403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Determinants of the Preferred Walking Speed in Individuals with Obesity.
    Fernández Menéndez A; Saubade M; Hans D; Millet GP; Malatesta D
    Obes Facts; 2019; 12(5):543-553. PubMed ID: 31505515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compliant walking appears metabolically advantageous at extreme step lengths.
    Kim J; Bertram JEA
    Gait Posture; 2018 Jul; 64():84-89. PubMed ID: 29883939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates.
    Seethapathi N; Srinivasan M
    Biol Lett; 2015 Sep; 11(9):20150486. PubMed ID: 26382072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of optimization in single- and inter-leg gait dynamics.
    Wuehr M; Pradhan C; Brandt T; Jahn K; Schniepp R
    Gait Posture; 2014 Feb; 39(2):733-8. PubMed ID: 24210648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferred and energetically optimal gait transition speeds in human locomotion.
    Hreljac A
    Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy cost and lower leg muscle activities during erect bipedal locomotion under hyperoxia.
    Abe D; Fukuoka Y; Maeda T; Horiuchi M
    J Physiol Anthropol; 2018 Jun; 37(1):18. PubMed ID: 29914562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of load and speed on the energetic cost of human walking.
    Bastien GJ; Willems PA; Schepens B; Heglund NC
    Eur J Appl Physiol; 2005 May; 94(1-2):76-83. PubMed ID: 15650888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship of the energetic cost of slow walking and peak energy expenditure to gait speed in mid-to-late life.
    Schrack JA; Simonsick EM; Ferrucci L
    Am J Phys Med Rehabil; 2013 Jan; 92(1):28-35. PubMed ID: 22854908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between step-to-step variability and metabolic cost of transport during human walking.
    Rock CG; Marmelat V; Yentes JM; Siu KC; Takahashi KZ
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30237239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constrained optimization in human walking: cost minimization and gait plasticity.
    Bertram JE
    J Exp Biol; 2005 Mar; 208(Pt 6):979-91. PubMed ID: 15767300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase.
    Rubenson J; Heliams DB; Lloyd DG; Fournier PA
    Proc Biol Sci; 2004 May; 271(1543):1091-9. PubMed ID: 15293864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.