These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 31506512)

  • 21. Effects of nitrogen-deficiency on efficiency of light-harvesting apparatus in radish.
    Cetner MD; Kalaji HM; Goltsev V; Aleksandrov V; Kowalczyk K; Borucki W; Jajoo A
    Plant Physiol Biochem; 2017 Oct; 119():81-92. PubMed ID: 28850868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maize GOLDEN2-LIKE genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition.
    Li X; Wang P; Li J; Wei S; Yan Y; Yang J; Zhao M; Langdale JA; Zhou W
    Commun Biol; 2020 Apr; 3(1):151. PubMed ID: 32238902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nature of self-regulation in photosynthetic light-harvesting antenna.
    Chmeliov J; Gelzinis A; Songaila E; Augulis R; Duffy CD; Ruban AV; Valkunas L
    Nat Plants; 2016 Apr; 2(5):16045. PubMed ID: 27243647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular basis of photoprotection and control of photosynthetic light-harvesting.
    Pascal AA; Liu Z; Broess K; van Oort B; van Amerongen H; Wang C; Horton P; Robert B; Chang W; Ruban A
    Nature; 2005 Jul; 436(7047):134-7. PubMed ID: 16001075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High light induced changes in organization, protein profile and function of photosynthetic machinery in Chlamydomonas reinhardtii.
    Nama S; Madireddi SK; Devadasu ER; Subramanyam R
    J Photochem Photobiol B; 2015 Nov; 152(Pt B):367-76. PubMed ID: 26388469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remodeling of the major light-harvesting antenna protein of PSII protects the young leaves of barley (Hordeum vulgare L.) from photoinhibition under prolonged iron deficiency.
    Saito A; Iino T; Sonoike K; Miwa E; Higuchi K
    Plant Cell Physiol; 2010 Dec; 51(12):2013-30. PubMed ID: 20980268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments.
    Cutolo EA; Guardini Z; Dall'Osto L; Bassi R
    New Phytol; 2023 Sep; 239(5):1567-1583. PubMed ID: 37282663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms.
    Magdaong NCM; Blankenship RE
    J Biol Chem; 2018 Apr; 293(14):5018-5025. PubMed ID: 29298897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery - including both photosystems II and I.
    Grieco M; Suorsa M; Jajoo A; Tikkanen M; Aro EM
    Biochim Biophys Acta; 2015; 1847(6-7):607-19. PubMed ID: 25843550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward an understanding of the mechanism of nonphotochemical quenching in green plants.
    Holt NE; Fleming GR; Niyogi KK
    Biochemistry; 2004 Jul; 43(26):8281-9. PubMed ID: 15222740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mesophyll-specific phytochromes impact chlorophyll light-harvesting complexes (LHCs) and non-photochemical quenching.
    Oh S; Montgomery BL
    Plant Signal Behav; 2019; 14(7):1609857. PubMed ID: 31037997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Some characteristics of photosynthetic apparatus under conditions of spaceflight.
    Volovik OI; Kordyum EL; Guikema JA
    J Gravit Physiol; 1999 Jul; 6(1):P127-8. PubMed ID: 11542989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes.
    Tanaka R; Tanaka A
    Biochim Biophys Acta; 2011 Aug; 1807(8):968-76. PubMed ID: 21216224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions.
    Lokstein H; Renger G; Götze JP
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34204994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes.
    Neilson JA; Durnford DG
    Photosynth Res; 2010 Nov; 106(1-2):57-71. PubMed ID: 20596891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light-harvesting processes in the dynamic photosynthetic antenna.
    Duffy CD; Valkunas L; Ruban AV
    Phys Chem Chem Phys; 2013 Nov; 15(43):18752-70. PubMed ID: 23868502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii.
    Beckmann J; Lehr F; Finazzi G; Hankamer B; Posten C; Wobbe L; Kruse O
    J Biotechnol; 2009 Jun; 142(1):70-7. PubMed ID: 19480949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Macroorganisation and flexibility of thylakoid membranes.
    Lambrev PH; Akhtar P
    Biochem J; 2019 Oct; 476(20):2981-3018. PubMed ID: 31657443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photosynthetic acclimation: structural reorganisation of light harvesting antenna--role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins.
    Kargul J; Barber J
    FEBS J; 2008 Mar; 275(6):1056-68. PubMed ID: 18318833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incorporation of the chlorophyll d-binding light-harvesting protein from Acaryochloris marina and its localization within the photosynthetic apparatus of Synechocystis sp. PCC6803.
    Yang D; Qing Y; Min C
    Biochim Biophys Acta; 2010 Feb; 1797(2):204-11. PubMed ID: 19854153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.