These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31506567)

  • 1. In situ characterization of the high pressure - high temperature melting curve of platinum.
    Anzellini S; Monteseguro V; Bandiello E; Dewaele A; Burakovsky L; Errandonea D
    Sci Rep; 2019 Sep; 9(1):13034. PubMed ID: 31506567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melting line of calcium characterized by in situ LH-DAC XRD and first-principles calculations.
    Anzellini S; Alfé D; Pozzo M; Errandonea D
    Sci Rep; 2021 Jul; 11(1):15025. PubMed ID: 34294781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the high-pressure and high-temperature phase diagram and equation of state of chromium.
    Anzellini S; Errandonea D; Burakovsky L; Proctor JE; Turnbull R; Beavers CM
    Sci Rep; 2022 Apr; 12(1):6727. PubMed ID: 35468934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High melting points of tantalum in a laser-heated diamond anvil cell.
    Dewaele A; Mezouar M; Guignot N; Loubeyre P
    Phys Rev Lett; 2010 Jun; 104(25):255701. PubMed ID: 20867395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature.
    Miyagi L; Kanitpanyacharoen W; Raju SV; Kaercher P; Knight J; MacDowell A; Wenk HR; Williams Q; Alarcon EZ
    Rev Sci Instrum; 2013 Feb; 84(2):025118. PubMed ID: 23464262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique.
    Kimura T; Kuwayama Y; Yagi T
    J Chem Phys; 2014 Feb; 140(7):074501. PubMed ID: 24559351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image analysis of speckle patterns as a probe of melting transitions in laser-heated diamond anvil cell experiments.
    Salem R; Matityahu S; Melchior A; Nikolaevsky M; Noked O; Sterer E
    Rev Sci Instrum; 2015 Sep; 86(9):093907. PubMed ID: 26429457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melting Curve and Isostructural Solid Transition in Superionic Ice.
    Queyroux JA; Hernandez JA; Weck G; Ninet S; Plisson T; Klotz S; Garbarino G; Guignot N; Mezouar M; Hanfland M; Itié JP; Datchi F
    Phys Rev Lett; 2020 Nov; 125(19):195501. PubMed ID: 33216588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructures define melting of molybdenum at high pressures.
    Hrubiak R; Meng Y; Shen G
    Nat Commun; 2017 Mar; 8():14562. PubMed ID: 28248309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction in the pulsed laser heated diamond anvil cell.
    Goncharov AF; Prakapenka VB; Struzhkin VV; Kantor I; Rivers ML; Dalton DA
    Rev Sci Instrum; 2010 Nov; 81(11):113902. PubMed ID: 21133481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a simultaneous Hugoniot and temperature measurement for preheated-metal shock experiments: melting temperatures of Ta at pressures of 100 GPa.
    Li J; Zhou X; Li J; Wu Q; Cai L; Dai C
    Rev Sci Instrum; 2012 May; 83(5):053902. PubMed ID: 22667628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-pressure melting curve of nitrogen and the liquid-liquid phase transition.
    Mukherjee GD; Boehler R
    Phys Rev Lett; 2007 Nov; 99(22):225701. PubMed ID: 18233298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa.
    Aquilanti G; Trapananti A; Karandikar A; Kantor I; Marini C; Mathon O; Pascarelli S; Boehler R
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12042-5. PubMed ID: 26371317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melting and dissociation of ammonia at high pressure and high temperature.
    Ojwang JG; McWilliams RS; Ke X; Goncharov AF
    J Chem Phys; 2012 Aug; 137(6):064507. PubMed ID: 22897293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clapeyron slope reversal in the melting curve of AuGa2 at 5.5 GPa.
    Geballe ZM; Raju SV; Godwal BK; Jeanloz R
    J Phys Condens Matter; 2013 Oct; 25(41):415401. PubMed ID: 24025237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team.
    Meng Y; Hrubiak R; Rod E; Boehler R; Shen G
    Rev Sci Instrum; 2015 Jul; 86(7):072201. PubMed ID: 26233341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High pressure-temperature Raman measurements of H2O melting to 22 GPa and 900 K.
    Lin JF; Militzer B; Struzhkin VV; Gregoryanz E; Hemley RJ; Mao HK
    J Chem Phys; 2004 Nov; 121(17):8423-7. PubMed ID: 15511164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-pressure melting of molybdenum.
    Belonoshko AB; Simak SI; Kochetov AE; Johansson B; Burakovsky L; Preston DL
    Phys Rev Lett; 2004 May; 92(19):195701. PubMed ID: 15169417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IR pyrometry in diamond anvil cell above 400 K.
    Shuker P; Melchior A; Assor Y; Belker D; Sterer E
    Rev Sci Instrum; 2008 Jul; 79(7):073908. PubMed ID: 18681717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-heating system for high-pressure X-ray diffraction at the Extreme Conditions beamline I15 at Diamond Light Source.
    Anzellini S; Kleppe AK; Daisenberger D; Wharmby MT; Giampaoli R; Boccato S; Baron MA; Miozzi F; Keeble DS; Ross A; Gurney S; Thompson J; Knap G; Booth M; Hudson L; Hawkins D; Walter MJ; Wilhelm H
    J Synchrotron Radiat; 2018 Nov; 25(Pt 6):1860-1868. PubMed ID: 30407199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.