These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31506863)

  • 1. Effect of structural distortions on articular cartilage permeability under large deformations.
    Maleki M; Hashlamoun K; Herzog W; Federico S
    Biomech Model Mechanobiol; 2020 Feb; 19(1):317-334. PubMed ID: 31506863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic Diffusivity Tensor in Articular Cartilage: Effective Medium Approach.
    Hashlamoun K; Federico S
    J Biomech Eng; 2020 Aug; 142(8):. PubMed ID: 31891378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the anisotropy and inhomogeneity of permeability in articular cartilage.
    Federico S; Herzog W
    Biomech Model Mechanobiol; 2008 Oct; 7(5):367-78. PubMed ID: 17619089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.
    Han SK; Federico S; Grillo A; Giaquinta G; Herzog W
    Biomech Model Mechanobiol; 2007 Apr; 6(3):139-50. PubMed ID: 16506020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage.
    Federico S; Grillo A; La Rosa G; Giaquinta G; Herzog W
    J Biomech; 2005 Oct; 38(10):2008-18. PubMed ID: 16084201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen fibres determine the crack morphology in articular cartilage.
    Moo EK; Tanska P; Federico S; Al-Saffar Y; Herzog W; Korhonen RK
    Acta Biomater; 2021 May; 126():301-314. PubMed ID: 33757903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications.
    Pierce DM; Ricken T; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2013; 16(12):1344-61. PubMed ID: 22764882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the anisotropic permeability in the frequency dependent properties of the superficial layer of articular cartilage.
    Gastaldi D; Taffetani M; Raiteri R; Vena P
    Comput Methods Biomech Biomed Engin; 2018 Aug; 21(11):635-644. PubMed ID: 30428711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage--a 3D finite element study of stresses and strains in human knee joint.
    Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Korhonen RK
    J Biomech; 2013 Apr; 46(6):1184-92. PubMed ID: 23384762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression.
    Quinn TM; Dierickx P; Grodzinsky AJ
    J Biomech; 2001 Nov; 34(11):1483-90. PubMed ID: 11672723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific cell-tissue interactions in rabbit knee joint articular cartilage.
    Ronkainen AP; Fick JM; Herzog W; Korhonen RK
    J Biomech; 2016 Sep; 49(13):2882-2890. PubMed ID: 27435567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic anisotropy of articular cartilage is associated with the microstructures of collagen fibers and chondrocytes.
    Wu JZ; Herzog W
    J Biomech; 2002 Jul; 35(7):931-42. PubMed ID: 12052395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an analytical model of soft biological tissues.
    Federico S; Herzog W
    J Biomech; 2008 Dec; 41(16):3309-13. PubMed ID: 18922533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.
    Wu JZ; Herzog W
    Ann Biomed Eng; 2000 Mar; 28(3):318-30. PubMed ID: 10784096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage.
    Quinn TM; Morel V
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):73-82. PubMed ID: 16715320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of collagen fibril distributions on the crack profile in articular cartilage.
    Komeili A; Rasoulian A; Kakavand R
    Comput Methods Programs Biomed; 2020 Oct; 195():105648. PubMed ID: 32717670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.