These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 31507161)
21. Synergistic Effect of Chemical Substitution and Insertion on the Thermoelectric Performance of Cu Shimizu Y; Suekuni K; Saito H; Lemoine P; Guilmeau E; Raveau B; Chetty R; Ohta M; Takabatake T; Ohtaki M Inorg Chem; 2021 Aug; 60(15):11364-11373. PubMed ID: 34269565 [TBL] [Abstract][Full Text] [Related]
22. Metavalent Bonding-Mediated Dual 6s Maria I; Arora R; Dutta M; Roychowdhury S; Waghmare UV; Biswas K J Am Chem Soc; 2023 Apr; 145(16):9292-9303. PubMed ID: 37042625 [TBL] [Abstract][Full Text] [Related]
23. High thermoelectric performance in low-cost SnS He W; Wang D; Wu H; Xiao Y; Zhang Y; He D; Feng Y; Hao YJ; Dong JF; Chetty R; Hao L; Chen D; Qin J; Yang Q; Li X; Song JM; Zhu Y; Xu W; Niu C; Li X; Wang G; Liu C; Ohta M; Pennycook SJ; He J; Li JF; Zhao LD Science; 2019 Sep; 365(6460):1418-1424. PubMed ID: 31604269 [TBL] [Abstract][Full Text] [Related]
24. Exceptional thermoelectric performance of a "star-like" SnSe nanotube with ultra-low thermal conductivity and a high power factor. Lin C; Cheng W; Guo Z; Chai G; Zhang H Phys Chem Chem Phys; 2017 Aug; 19(34):23247-23253. PubMed ID: 28825754 [TBL] [Abstract][Full Text] [Related]
25. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Bubnova O; Khan ZU; Malti A; Braun S; Fahlman M; Berggren M; Crispin X Nat Mater; 2011 Jun; 10(6):429-33. PubMed ID: 21532583 [TBL] [Abstract][Full Text] [Related]
26. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Fu C; Bai S; Liu Y; Tang Y; Chen L; Zhao X; Zhu T Nat Commun; 2015 Sep; 6():8144. PubMed ID: 26330371 [TBL] [Abstract][Full Text] [Related]
27. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. Poudeu PF; D'Angelo J; Kong H; Downey A; Short JL; Pcionek R; Hogan TP; Uher C; Kanatzidis MG J Am Chem Soc; 2006 Nov; 128(44):14347-55. PubMed ID: 17076508 [TBL] [Abstract][Full Text] [Related]
28. Low lattice thermal conductivities and good thermoelectric performance of hexagonal antiperovskites X(Ba & Sr) Zeng S; Yan X; Shen Q; Tu Y; Huang H; Li G Phys Chem Chem Phys; 2023 Oct; 25(39):26507-26514. PubMed ID: 37782050 [TBL] [Abstract][Full Text] [Related]
29. Rattling-Induced Ultralow Thermal Conductivity Leading to Exceptional Thermoelectric Performance in AgIn Juneja R; Singh AK ACS Appl Mater Interfaces; 2019 Sep; 11(37):33894-33900. PubMed ID: 31454220 [TBL] [Abstract][Full Text] [Related]
30. First-principles study of the layered thermoelectric material TiNBr. Zhang S; Xu B; Lin Y; Nan C; Liu W RSC Adv; 2019 Apr; 9(23):12886-12894. PubMed ID: 35520787 [TBL] [Abstract][Full Text] [Related]
31. Thermoelectric Properties and Electronic Structures of CuTi Hashikuni K; Suekuni K; Usui H; Chetty R; Ohta M; Kuroki K; Takabatake T; Watanabe K; Ohtaki M Inorg Chem; 2019 Jan; 58(2):1425-1432. PubMed ID: 30620579 [TBL] [Abstract][Full Text] [Related]
32. Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity. Saparamadu U; Li C; He R; Zhu H; Ren Z; Mao J; Song S; Sun J; Chen S; Zhang Q; Nielsch K; Broido D; Ren Z ACS Appl Mater Interfaces; 2019 Jan; 11(1):511-516. PubMed ID: 30525424 [TBL] [Abstract][Full Text] [Related]
33. Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (Cu Xie H; Hao S; Bailey TP; Cai S; Zhang Y; Slade TJ; Snyder GJ; Dravid VP; Uher C; Wolverton C; Kanatzidis MG J Am Chem Soc; 2021 Apr; 143(15):5978-5989. PubMed ID: 33847500 [TBL] [Abstract][Full Text] [Related]
34. Effects of Sb Deviation from Its Stoichiometric Ratio on the Micro- and Electronic Structures and Thermoelectric Properties of Cu Huang L; Kong Y; Zhang J; Zhu C; Zhang J; Li Y; Li D; Xin H; Wang Z; Qin X ACS Appl Mater Interfaces; 2020 Mar; 12(12):14145-14153. PubMed ID: 32109043 [TBL] [Abstract][Full Text] [Related]
35. Realizing High Thermoelectric Performance below Phase Transition Temperature in Polycrystalline SnSe via Lattice Anharmonicity Strengthening and Strain Engineering. Tang G; Liu J; Zhang J; Li D; Rara KH; Xu R; Lu W; Liu J; Zhang Y; Feng Z ACS Appl Mater Interfaces; 2018 Sep; 10(36):30558-30565. PubMed ID: 30084251 [TBL] [Abstract][Full Text] [Related]
36. Thermoelectric properties of the quaternary chalcogenides BaCu5.9STe6 and BaCu5.9SeTe6. Oudah M; Kleinke KM; Kleinke H Inorg Chem; 2015 Feb; 54(3):845-9. PubMed ID: 25299429 [TBL] [Abstract][Full Text] [Related]
37. Realizing High Figure of Merit in Phase-Separated Polycrystalline Sn Tang G; Wei W; Zhang J; Li Y; Wang X; Xu G; Chang C; Wang Z; Du Y; Zhao LD J Am Chem Soc; 2016 Oct; 138(41):13647-13654. PubMed ID: 27709927 [TBL] [Abstract][Full Text] [Related]
38. Ternary multicomponent Ba/Mg/Si compounds with inherent bonding hierarchy and rattling Ba atoms toward low lattice thermal conductivity. Li J; Yang J; Shi B; Zhai W; Zhang C; Yan Y; Liu PF Phys Chem Chem Phys; 2020 Sep; 22(33):18556-18561. PubMed ID: 32785329 [TBL] [Abstract][Full Text] [Related]
39. Enhanced Figure of Merit in Bismuth-Antimony Fine-Grained Alloys at Cryogenic Temperatures. Gao S; Gaskins J; Hu X; Tomko K; Hopkins P; Poon SJ Sci Rep; 2019 Oct; 9(1):14892. PubMed ID: 31624277 [TBL] [Abstract][Full Text] [Related]
40. Effect of Te substitution on crystal structure and transport properties of AgBiSe Goto Y; Nishida A; Nishiate H; Murata M; Lee CH; Miura A; Moriyoshi C; Kuroiwa Y; Mizuguchi Y Dalton Trans; 2018 Feb; 47(8):2575-2580. PubMed ID: 29384546 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]