These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31507400)

  • 1. Development of an EMG-Controlled Knee Exoskeleton to Assist Home Rehabilitation in a Game Context.
    Lyu M; Chen WH; Ding X; Wang J; Pei Z; Zhang B
    Front Neurorobot; 2019; 13():67. PubMed ID: 31507400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knee exoskeleton enhanced with artificial intelligence to provide assistance-as-needed.
    Lyu M; Chen WH; Ding X; Wang J
    Rev Sci Instrum; 2019 Sep; 90(9):094101. PubMed ID: 31575258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output.
    George JA; Gunnell AJ; Archangeli D; Hunt G; Ishmael M; Foreman KB; Lenzi T
    Front Neurorobot; 2021; 15():700823. PubMed ID: 34803646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assist-As-Needed Exoskeleton for Hand Joint Rehabilitation Based on Muscle Effort Detection.
    Castiblanco JC; Mondragon IF; Alvarado-Rojas C; Colorado JD
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progressive Rehabilitation Based on EMG Gesture Classification and an MPC-Driven Exoskeleton.
    Bonilla D; Bravo M; Bonilla SP; Iragorri AM; Mendez D; Mondragon IF; Alvarado-Rojas C; Colorado JD
    Bioengineering (Basel); 2023 Jun; 10(7):. PubMed ID: 37508798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exoskeleton for post-stroke recovery of ambulation (ExStRA): study protocol for a mixed-methods study investigating the efficacy and acceptance of an exoskeleton-based physical therapy program during stroke inpatient rehabilitation.
    Louie DR; Mortenson WB; Durocher M; Teasell R; Yao J; Eng JJ
    BMC Neurol; 2020 Jan; 20(1):35. PubMed ID: 31992219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromyography Assessment During Gait in a Robotic Exoskeleton for Acute Stroke.
    Androwis GJ; Pilkar R; Ramanujam A; Nolan KJ
    Front Neurol; 2018; 9():630. PubMed ID: 30131756
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke.
    Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N
    J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvements in motor control are associated with improved quality of life following an at-home muscle biofeedback program for chronic stroke.
    Marin-Pardo O; Donnelly MR; Phanord CS; Wong K; Liew SL
    Front Hum Neurosci; 2024; 18():1356052. PubMed ID: 38818030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods.
    Just F; Özen Ö; Tortora S; Klamroth-Marganska V; Riener R; Rauter G
    J Neuroeng Rehabil; 2020 Feb; 17(1):13. PubMed ID: 32024528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing Surface EMG Signals for Exoskeleton Motion Control.
    Yin G; Zhang X; Chen D; Li H; Chen J; Chen C; Lemos S
    Front Neurorobot; 2020; 14():40. PubMed ID: 32765250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of pelvic movements of a gait training system for stroke patients: a single blind, randomized, parallel study.
    Son C; Lee A; Lee J; Kim D; Kim SJ; Chun MH; Choi J
    J Neuroeng Rehabil; 2021 Dec; 18(1):185. PubMed ID: 34961541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Protocol to Assess Neuromuscular Plasticity Induced by an Exoskeleton Training Session.
    Di Marco R; Rubega M; Lennon O; Formaggio E; Sutaj N; Dazzi G; Venturin C; Bonini I; Ortner R; Cerrel Bazo HA; Tonin L; Tortora S; Masiero S; Del Felice A; On Behalf Of The Pro Gait Consortium
    Methods Protoc; 2021 Jul; 4(3):. PubMed ID: 34287357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voluntary Control of an Ankle Joint Exoskeleton by Able-Bodied Individuals and Stroke Survivors Using EMG-Based Admittance Control Scheme.
    Zhuang Y; Leng Y; Zhou J; Song R; Li L; Su SW
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):695-705. PubMed ID: 32746072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociating motor learning from recovery in exoskeleton training post-stroke.
    Schweighofer N; Wang C; Mottet D; Laffont I; Bakhti K; Reinkensmeyer DJ; Rémy-Néris O
    J Neuroeng Rehabil; 2018 Oct; 15(1):89. PubMed ID: 30290806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing of a 3D printed hand exoskeleton for an individual with stroke: a case study.
    Dudley DR; Knarr BA; Siu KC; Peck J; Ricks B; Zuniga JM
    Disabil Rehabil Assist Technol; 2021 Feb; 16(2):209-213. PubMed ID: 31385727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intensity Modulated Exoskeleton Gait Training Post Stroke.
    Nolan KJ; Ames GR; Dandola CM; Breighner JE; Franco S; Karunakaran KK; Saleh S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.
    Louie DR; Eng JJ
    J Neuroeng Rehabil; 2016 Jun; 13(1):53. PubMed ID: 27278136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.