BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 31507428)

  • 1. Imaging the Dynamic Interaction Between Sprouting Microvessels and the Extracellular Matrix.
    Rauff A; LaBelle SA; Strobel HA; Hoying JB; Weiss JA
    Front Physiol; 2019; 10():1011. PubMed ID: 31507428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale time series microscopy of neovessel growth during angiogenesis.
    Utzinger U; Baggett B; Weiss JA; Hoying JB; Edgar LT
    Angiogenesis; 2015 Jul; 18(3):219-32. PubMed ID: 25795217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical interaction of angiogenic microvessels with the extracellular matrix.
    Edgar LT; Hoying JB; Utzinger U; Underwood CJ; Krishnan L; Baggett BK; Maas SA; Guilkey JE; Weiss JA
    J Biomech Eng; 2014 Feb; 136(2):021001. PubMed ID: 24441831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of microvascular networks: role of stromal interactions directing angiogenic growth.
    Hoying JB; Utzinger U; Weiss JA
    Microcirculation; 2014 May; 21(4):278-89. PubMed ID: 24447042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro.
    Edgar LT; Maas SA; Guilkey JE; Weiss JA
    Biomech Model Mechanobiol; 2015 Aug; 14(4):767-82. PubMed ID: 25429840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Biophysical Cues Near the Tip Cell Microenvironment Provide Distinct Guidance Signals to Angiogenic Neovessels.
    Rauff A; Manning JC; Hoying JB; LaBelle SA; Strobel HA; Stoddard GJ; Weiss JA
    Ann Biomed Eng; 2023 Aug; 51(8):1835-1846. PubMed ID: 37149511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis.
    Edgar LT; Underwood CJ; Guilkey JE; Hoying JB; Weiss JA
    PLoS One; 2014; 9(1):e85178. PubMed ID: 24465500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Endothelial Stalk Cell-Matrix Interactions Regulate Angiogenic Sprout Diameter.
    Wang WY; Jarman EH; Lin D; Baker BM
    Front Bioeng Biotechnol; 2021; 9():620128. PubMed ID: 33869150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemotaxis and Chemokinesis in 3D Macromolecular Matrices : Relevance to Angiogenesis.
    Schor AM; Ellis I; Schor SL
    Methods Mol Med; 2001; 46():163-83. PubMed ID: 21340919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stromal Cells Promote Neovascular Invasion Across Tissue Interfaces.
    Strobel HA; LaBelle SA; Krishnan L; Dale J; Rauff A; Poulson AM; Bader N; Beare JE; Aliaj K; Weiss JA; Hoying JB
    Front Physiol; 2020; 11():1026. PubMed ID: 33013445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of mechanical boundary conditions on orientation of angiogenic microvessels.
    Krishnan L; Underwood CJ; Maas S; Ellis BJ; Kode TC; Hoying JB; Weiss JA
    Cardiovasc Res; 2008 May; 78(2):324-32. PubMed ID: 18310100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix deformations around angiogenic sprouts correlate to sprout dynamics and suggest pulling activity.
    Vaeyens MM; Jorge-PeƱas A; Barrasa-Fano J; Steuwe C; Heck T; Carmeliet P; Roeffaers M; Van Oosterwyck H
    Angiogenesis; 2020 Aug; 23(3):315-324. PubMed ID: 31997048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Configurations of 3D Extracellular Matrix Collagen Density and Anisotropy Simultaneously Guide Angiogenesis.
    LaBelle SA; Poulson AM; Maas SA; Rauff A; Ateshian GA; Weiss JA
    PLoS Comput Biol; 2023 Oct; 19(10):e1011553. PubMed ID: 37871113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image-based crosstalk analysis of cell-cell interactions during sprouting angiogenesis using blood-vessel-on-a-chip.
    Sano T; Nakajima T; Senda KA; Nakano S; Yamato M; Ikeda Y; Zeng H; Kawabe JI; Matsunaga YT
    Stem Cell Res Ther; 2022 Dec; 13(1):532. PubMed ID: 36575469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calpain-Associated Proteolytic Regulation of the Stromal Microenvironment in Cancer.
    Miyazaki T; Akasu R; Miyazaki A
    Curr Pharm Des; 2021; 27(28):3128-3138. PubMed ID: 33719969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Silico Investigation of Angiogenesis with Growth and Stress Generation Coupled to Local Extracellular Matrix Density.
    Edgar LT; Hoying JB; Weiss JA
    Ann Biomed Eng; 2015 Jul; 43(7):1531-42. PubMed ID: 25994280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of a three-dimensional model to study human uterine angiogenesis.
    Duran CL; Abbey CA; Bayless KJ
    Mol Hum Reprod; 2018 Feb; 24(2):74-93. PubMed ID: 29329415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Angiogenesis and anti-angiogenesis in human neoplasms. Recent developments and the therapeutic prospects].
    Vacca A; Ribatti D; Pellegrino A; Dammacco F
    Ann Ital Med Int; 2000; 15(1):7-19. PubMed ID: 10842887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of VEGF-A in angiogenesis promoted by umbilical cord-derived mesenchymal stromal/stem cells: in vitro study.
    Arutyunyan I; Fatkhudinov T; Kananykhina E; Usman N; Elchaninov A; Makarov A; Bolshakova G; Goldshtein D; Sukhikh G
    Stem Cell Res Ther; 2016 Mar; 7():46. PubMed ID: 27001300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.