These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Changes in microbial communities of a passive coal mine drainage bioremediation system. Roth H; Gallo S; Badger P; Hillwig M Can J Microbiol; 2019 Oct; 65(10):775-782. PubMed ID: 31226241 [TBL] [Abstract][Full Text] [Related]
4. In-situ remediation of acid mine drainage from abandoned coal mine by filed pilot-scale passive treatment system: Performance and response of microbial communities to low pH and elevated Fe. Chen H; Xiao T; Ning Z; Li Q; Xiao E; Liu Y; Xiao Q; Lan X; Ma L; Lu F Bioresour Technol; 2020 Dec; 317():123985. PubMed ID: 32805482 [TBL] [Abstract][Full Text] [Related]
5. A seasonal study of a passive abandoned coalmine drainage remediation system reveals three distinct zones of contaminant levels and microbial communities. Valkanas MM; Trun NJ Microbiologyopen; 2018 Aug; 7(4):e00585. PubMed ID: 29696823 [TBL] [Abstract][Full Text] [Related]
6. Effects of long-term discharge of acid mine drainage from abandoned coal mines on soil microorganisms: microbial community structure, interaction patterns, and metabolic functions. Chen D; Feng Q; Liang H Environ Sci Pollut Res Int; 2021 Oct; 28(38):53936-53952. PubMed ID: 34046832 [TBL] [Abstract][Full Text] [Related]
7. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run. Grettenberger CL; Pearce AR; Bibby KJ; Jones DS; Burgos WD; Macalady JL Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28087535 [TBL] [Abstract][Full Text] [Related]
8. Microbial Community Shifts in Response to Acid Mine Drainage Pollution Within a Natural Wetland Ecosystem. Aguinaga OE; McMahon A; White KN; Dean AP; Pittman JK Front Microbiol; 2018; 9():1445. PubMed ID: 30013541 [TBL] [Abstract][Full Text] [Related]
9. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Johnson DB; Hallberg KB Sci Total Environ; 2005 Feb; 338(1-2):81-93. PubMed ID: 15680629 [TBL] [Abstract][Full Text] [Related]
10. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Burns AS; Pugh CW; Segid YT; Behum PT; Lefticariu L; Bender KS Biodegradation; 2012 Jun; 23(3):415-29. PubMed ID: 22083105 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage. Sun W; Xiao E; Krumins V; Dong Y; Xiao T; Ning Z; Chen H; Xiao Q Appl Microbiol Biotechnol; 2016 Oct; 100(19):8523-35. PubMed ID: 27277134 [TBL] [Abstract][Full Text] [Related]
12. A preliminary study to design a floating treatment wetland for remediating acid mine drainage-impacted water using vetiver grass (Chrysopogon zizanioides). Kiiskila JD; Sarkar D; Feuerstein KA; Datta R Environ Sci Pollut Res Int; 2017 Dec; 24(36):27985-27993. PubMed ID: 28990146 [TBL] [Abstract][Full Text] [Related]
13. Response of a New Zealand mayfly (Deleatidium spp.) to acid mine drainage: implications for mine remediation. O'Halloran K; Cavanagh JA; Harding JS Environ Toxicol Chem; 2008 May; 27(5):1135-40. PubMed ID: 18419179 [TBL] [Abstract][Full Text] [Related]
14. Sulfate-reducing bacterial community shifts in response to acid mine drainage in the sediment of the Hengshi watershed, South China. Bao Y; Jin X; Guo C; Lu G; Dang Z Environ Sci Pollut Res Int; 2021 Jan; 28(3):2822-2834. PubMed ID: 32895792 [TBL] [Abstract][Full Text] [Related]
15. Temporal evolution of bacterial communities associated with the in situ wetland-based remediation of a marine shore porphyry copper tailings deposit. Diaby N; Dold B; Rohrbach E; Holliger C; Rossi P Sci Total Environ; 2015 Nov; 533():110-21. PubMed ID: 26151655 [TBL] [Abstract][Full Text] [Related]
16. Development of a small-scale bioreactor method to monitor the molecular diversity and environmental impacts of bacterial biofilm communities from an acid mine drainage impacted creek. Cole M; Wrubel J; Henegan P; Janzen C; Holt J; Tobin T J Microbiol Methods; 2011 Oct; 87(1):96-104. PubMed ID: 21821067 [TBL] [Abstract][Full Text] [Related]
17. Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Hallberg KB; Johnson DB Sci Total Environ; 2005 Feb; 338(1-2):53-66. PubMed ID: 15680626 [TBL] [Abstract][Full Text] [Related]
18. Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage. Xu R; Li B; Xiao E; Young LY; Sun X; Kong T; Dong Y; Wang Q; Yang Z; Chen L; Sun W Environ Pollut; 2020 Jun; 261():114226. PubMed ID: 32113110 [TBL] [Abstract][Full Text] [Related]
19. Impact of acid mine drainage chemistry and microbiology on the development of efficient Fe removal activities. Sharma S; Lee M; Reinmann CS; Pumneo J; Cutright TJ; Senko JM Chemosphere; 2020 Jun; 249():126117. PubMed ID: 32088465 [TBL] [Abstract][Full Text] [Related]
20. Characterization of iron-metabolizing communities in soils contaminated by acid mine drainage from an abandoned coal mine in Southwest China. Gao P; Sun X; Xiao E; Xu Z; Li B; Sun W Environ Sci Pollut Res Int; 2019 Apr; 26(10):9585-9598. PubMed ID: 30726542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]